Difference between revisions of "TEX/Favorites"

From Web
Jump to navigation Jump to search
 
Line 1: Line 1:
<amsmath>\sideset{}{'}\sum_{n<k,\;\text{$n$ odd}} nE_n</amsmath>
+
\textstyle \frac{x}{y} \frac{x}{y}
 
+
\textstyle \sum_x^n \sum_{x=1}^{n}
{|
+
\textstyle \prod_x^n \prod^{x=1}_{n}
|\textstyle \frac{x}{y}   ||  \frac{x}{y}  
+
\textstyle \int_a^b \int_{a}^{b} f (x)\,dx
|-
+
\textstyle \frac{\partial x}{\partial y} \frac{\partial x}{\partial y}
|\textstyle \sum_x^n   ||  \sum_{x=1}^{n}  
+
\textstyle \sqrt x \sqrt{x}
|-
+
\textstyle \sqrt[3]{x} \sqrt[3]{x}
|\textstyle \prod_x^n   ||  \prod^{x=1}_{n}  
+
\textstyle f(x) f(x)
|-
+
\lim \lim_{x\to\infty}
|\textstyle \int_a^b   ||  \int_{a}^{b} f (x)\,dx  
+
***
|-
+
\sin \sin (x)
|\textstyle \frac{\partial x}{\partial y} ||  \frac{\partial x}{\partial y}
+
\cos \cos (x)
|-
+
\tan \tan (x)
|\textstyle \sqrt x   ||  \sqrt{x}  
+
\log \log (x)
|-
+
\ln \ln (x)
|\textstyle \sqrt[3]{x} ||  \sqrt[3]{x}  
+
***
|-
+
\le \le
|\textstyle f(x) ||  f(x)  
+
\ge \ge
|-
+
\neq \neq
|\lim   ||  \lim_{x\to\infty}  
+
\approx \approx
|-
+
\equiv \equiv
| ***
+
\propto \propto
|-
+
\infty \infty
|\sin   ||  \sin (x)  
+
***
|-
+
\alpha \alpha
|\cos   ||  \cos (x)  
+
\beta \beta
|-
+
\gamma \gamma
|\tan   ||  \tan (x)  
+
\delta \delta
|-
+
\epsilon \epsilon
|\log   ||  \log (x)  
+
\zeta \zeta
|-
+
\eta \eta
|\ln   ||  \ln (x)  
+
\theta \theta
|-
+
\vartheta \vartheta
| ***
+
\kappa \kappa
|-
+
\lambda \lambda
|\le   ||  \le  
+
\mu \mu
|-
+
\xi \xi
|\ge   ||  \ge  
+
\pi \pi
|-
+
\rho \rho
|\neq   ||  \neq  
+
\sigma \sigma
|-
+
\tau \tau
|\approx   ||  \approx  
+
\phi \phi
|-
+
\varphi \varphi
|\equiv   ||  \equiv  
+
\chi \chi
|-
+
\psi \psi
|\propto   ||  \propto  
+
\omega \omega
|-
+
***
|\infty   ||  \infty  
+
\Rightarrow \Rightarrow
|-
+
\rightarrow \rightarrow
| ***
+
\Leftarrow \Leftarrow
|-
+
\leftarrow \leftarrow
|\alpha   ||  \alpha  
+
\Leftrightarrow \Leftrightarrow
|-
+
\vec{x} \vec{x}
|\beta   ||  \beta  
+
***
|-
+
( \left(
|\gamma   ||  \gamma  
+
) \right)
|-
+
[ \left[
|\delta   ||  \delta  
+
] \right]
|-
+
\{ \left{
|\epsilon   ||  \epsilon  
+
\} \right}
|-
+
\textstyle {n \choose k} {n \choose k}
|\zeta   ||  \zeta  
+
***
|-
+
\Box \Box
|\eta   ||  \eta  
+
\forall \forall
|-
+
\exists \exists
|\theta ||  \theta  
+
\in \in
|-
+
\not\in \not\in
|\vartheta ||  \vartheta  
+
***
|-
+
\mbox{Taylor} f(x) = \sum_{k=0}^{\infty } \frac{ f^{k} (a) }{ k! } (x - a)^k
|\kappa   ||  \kappa  
+
\mbox{Euler}^1 e^{i \varphi } := \cos \varphi + i \sin \varphi
|-
 
|\lambda   ||  \lambda  
 
|-
 
|\mu   ||  \mu  
 
|-
 
|\xi   ||  \xi  
 
|-
 
|\pi   ||  \pi  
 
|-
 
|\rho   ||  \rho  
 
|-
 
|\sigma   ||  \sigma  
 
|-
 
|\tau   ||  \tau  
 
|-
 
|\phi   ||  \phi
 
|-
 
|\varphi   ||  \varphi
 
|-
 
|\chi   ||  \chi
 
|-
 
|\psi   ||  \psi
 
|-
 
|\omega   ||  \omega  
 
|-
 
| ***
 
|-
 
|\Rightarrow   ||  \Rightarrow  
 
|-
 
|\rightarrow ||  \rightarrow  
 
|-
 
|\Leftarrow ||  \Leftarrow  
 
|-
 
|\leftarrow   ||  \leftarrow  
 
|-
 
|\Leftrightarrow ||  \Leftrightarrow  
 
|-
 
|\vec{x} ||  \vec{x}  
 
|-
 
| ***
 
|-
 
|(   ||  \left(  
 
|-
 
|)   ||  \right)  
 
|-
 
|[   ||  \left[  
 
|-
 
|]   ||  \right]  
 
|-
 
|\{   ||  \left{  
 
|-
 
|\}   ||  \right}  
 
|-
 
|\textstyle {n \choose k} || {n \choose k}  
 
|-
 
| ***
 
|-
 
|\Box || \Box
 
|-
 
|\forall || \forall
 
|-
 
|\exists || \exists
 
|-
 
|\in || \in
 
|-
 
|\not\in || \not\in
 
|-
 
| ***
 
|-
 
|\mbox{Taylor} || f(x) = \sum_{k=0}^{\infty } \frac{ f^{k} (a) }{ k! } (x - a)^k
 
|-
 
|\mbox{Euler}^1 || e^{i \varphi } := \cos \varphi   + i \sin \varphi  
 
|}
 

Revision as of 18:44, 14 January 2007

\textstyle \frac{x}{y} \frac{x}{y} \textstyle \sum_x^n \sum_{x=1}^{n} \textstyle \prod_x^n \prod^{x=1}_{n} \textstyle \int_a^b \int_{a}^{b} f (x)\,dx \textstyle \frac{\partial x}{\partial y} \frac{\partial x}{\partial y} \textstyle \sqrt x \sqrt{x} \textstyle \sqrt[3]{x} \sqrt[3]{x} \textstyle f(x) f(x) \lim \lim_{x\to\infty}

\sin \sin (x) \cos \cos (x) \tan \tan (x) \log \log (x) \ln \ln (x)

\le \le \ge \ge \neq \neq \approx \approx \equiv \equiv \propto \propto \infty \infty

\alpha \alpha \beta \beta \gamma \gamma \delta \delta \epsilon \epsilon \zeta \zeta \eta \eta \theta \theta \vartheta \vartheta \kappa \kappa \lambda \lambda \mu \mu \xi \xi \pi \pi \rho \rho \sigma \sigma \tau \tau \phi \phi \varphi \varphi \chi \chi \psi \psi \omega \omega

\Rightarrow \Rightarrow \rightarrow \rightarrow \Leftarrow \Leftarrow \leftarrow \leftarrow \Leftrightarrow \Leftrightarrow \vec{x} \vec{x}

( \left( ) \right) [ \left[ ] \right] \{ \left{ \} \right} \textstyle {n \choose k} {n \choose k}

\Box \Box \forall \forall \exists \exists \in \in \not\in \not\in

\mbox{Taylor} f(x) = \sum_{k=0}^{\infty } \frac{ f^{k} (a) }{ k! } (x - a)^k \mbox{Euler}^1 e^{i \varphi } := \cos \varphi + i \sin \varphi