TEX/Favorites

From Web
Jump to navigation Jump to search
<amsmath>\frac{x}{y}</amsmath> \frac{x}{y}
<amsmath>\sum_{x=1}^{n}</amsmath> \sum_{x=1}^{n}
<amsmath>\prod^{x=1}_{n}</amsmath> \prod^{x=1}_{n}
<amsmath>\int_{a}^{b} f (x)\,dx</amsmath> \int_{a}^{b} f (x)\,dx
<amsmath>\frac{\partial x}{\partial y}</amsmath> \frac{\partial x}{\partial y}
<amsmath>\sqrt{x}</amsmath> \sqrt{x}
<amsmath>\sqrt[3]{x}</amsmath> \sqrt[3]{x}
<amsmath>f(x)</amsmath> f(x)
<amsmath>\lim_{x\to\infty}</amsmath> \lim_{x\to\infty}
<amsmath>\sin (x)</amsmath> \sin (x)
<amsmath>\cos (x)</amsmath> \cos (x)
<amsmath>\tan (x)</amsmath> \tan (x)
<amsmath>\log (x)</amsmath> \log (x)
<amsmath>\ln (x)</amsmath> \ln (x)
<amsmath>\le</amsmath> \le
<amsmath>\ge</amsmath> \ge
<amsmath>\neq</amsmath> \neq
<amsmath>\approx</amsmath> \approx
<amsmath>\equiv</amsmath> \equiv
<amsmath>\propto</amsmath> \propto
<amsmath>\infty</amsmath> \infty
<amsmath>\alpha</amsmath> \alpha
<amsmath>\beta</amsmath> \beta
<amsmath>\gamma</amsmath> \gamma
<amsmath>\delta</amsmath> \delta
<amsmath>\epsilon</amsmath> \epsilon
<amsmath>\zeta</amsmath> \zeta
<amsmath>\eta</amsmath> \eta
<amsmath>\theta</amsmath> \theta
<amsmath>\vartheta</amsmath> \vartheta
<amsmath>\kappa</amsmath> \kappa
<amsmath>\lambda</amsmath> \lambda
<amsmath>\mu</amsmath> \mu
<amsmath>\xi</amsmath> \xi
<amsmath>\pi</amsmath> \pi
<amsmath>\rho</amsmath> \rho
<amsmath>\sigma</amsmath> \sigma
<amsmath>\tau</amsmath> \tau
<amsmath>\phi</amsmath> \phi
<amsmath>\varphi</amsmath> \varphi
<amsmath>\chi</amsmath> \chi
<amsmath>\psi</amsmath> \psi
<amsmath>\omega</amsmath> \omega
<amsmath>\Rightarrow</amsmath> \Rightarrow
<amsmath>\rightarrow</amsmath> \rightarrow
<amsmath>\Leftarrow</amsmath> \Leftarrow
<amsmath>\leftarrow</amsmath> \leftarrow
<amsmath>\Leftrightarrow</amsmath> \Leftrightarrow
<amsmath>\vec{x}</amsmath> \vec{x}
<amsmath>{n \choose k}</amsmath> {n \choose k}
<amsmath>\Box</amsmath> \Box
<amsmath>\forall</amsmath> \forall
<amsmath>\exists</amsmath> \exists
<amsmath>\in</amsmath> \in
<amsmath>\not\in</amsmath> \not\in
<amsmath>\mbox{Taylor} f(x) = \sum_{k=0}^{\infty } \frac{ f^{k} (a) }{ k! } (x - a)^k</amsmath> \mbox{Taylor} f(x) = \sum_{k=0}^{\infty } \frac{ f^{k} (a) }{ k! } (x - a)^k
<amsmath>\mbox{Euler}^1 e^{i \varphi } := \cos \varphi + i \sin \varphi</amsmath> \mbox{Euler}^1 e^{i \varphi } := \cos \varphi + i \sin \varphi