TEX/Favorites: Difference between revisions

From Web
Jump to navigation Jump to search
No edit summary
 
No edit summary
Line 1: Line 1:
<amsmath>\sideset{}{'}\sum_{n<k,\;\text{$n$ odd}} nE_n</amsmath>
\textstyle \frac{x}{y} \frac{x}{y}
 
\textstyle \sum_x^n \sum_{x=1}^{n}
{|
\textstyle \prod_x^n \prod^{x=1}_{n}
|\textstyle \frac{x}{y}   ||  \frac{x}{y}  
\textstyle \int_a^b \int_{a}^{b} f (x)\,dx
|-
\textstyle \frac{\partial x}{\partial y} \frac{\partial x}{\partial y}
|\textstyle \sum_x^n   ||  \sum_{x=1}^{n}  
\textstyle \sqrt x \sqrt{x}
|-
\textstyle \sqrt[3]{x} \sqrt[3]{x}
|\textstyle \prod_x^n   ||  \prod^{x=1}_{n}  
\textstyle f(x) f(x)
|-
\lim \lim_{x\to\infty}
|\textstyle \int_a^b   ||  \int_{a}^{b} f (x)\,dx  
***
|-
\sin \sin (x)
|\textstyle \frac{\partial x}{\partial y} ||  \frac{\partial x}{\partial y}
\cos \cos (x)
|-
\tan \tan (x)
|\textstyle \sqrt x   ||  \sqrt{x}  
\log \log (x)
|-
\ln \ln (x)
|\textstyle \sqrt[3]{x} ||  \sqrt[3]{x}  
***
|-
\le \le
|\textstyle f(x) ||  f(x)  
\ge \ge
|-
\neq \neq
|\lim   ||  \lim_{x\to\infty}  
\approx \approx
|-
\equiv \equiv
| ***
\propto \propto
|-
\infty \infty
|\sin   ||  \sin (x)  
***
|-
\alpha \alpha
|\cos   ||  \cos (x)  
\beta \beta
|-
\gamma \gamma
|\tan   ||  \tan (x)  
\delta \delta
|-
\epsilon \epsilon
|\log   ||  \log (x)  
\zeta \zeta
|-
\eta \eta
|\ln   ||  \ln (x)  
\theta \theta
|-
\vartheta \vartheta
| ***
\kappa \kappa
|-
\lambda \lambda
|\le   ||  \le  
\mu \mu
|-
\xi \xi
|\ge   ||  \ge  
\pi \pi
|-
\rho \rho
|\neq   ||  \neq  
\sigma \sigma
|-
\tau \tau
|\approx   ||  \approx  
\phi \phi
|-
\varphi \varphi
|\equiv   ||  \equiv  
\chi \chi
|-
\psi \psi
|\propto   ||  \propto  
\omega \omega
|-
***
|\infty   ||  \infty  
\Rightarrow \Rightarrow
|-
\rightarrow \rightarrow
| ***
\Leftarrow \Leftarrow
|-
\leftarrow \leftarrow
|\alpha   ||  \alpha  
\Leftrightarrow \Leftrightarrow
|-
\vec{x} \vec{x}
|\beta   ||  \beta  
***
|-
( \left(
|\gamma   ||  \gamma  
) \right)
|-
[ \left[
|\delta   ||  \delta  
] \right]
|-
\{ \left{
|\epsilon   ||  \epsilon  
\} \right}
|-
\textstyle {n \choose k} {n \choose k}
|\zeta   ||  \zeta  
***
|-
\Box \Box
|\eta   ||  \eta  
\forall \forall
|-
\exists \exists
|\theta ||  \theta  
\in \in
|-
\not\in \not\in
|\vartheta ||  \vartheta  
***
|-
\mbox{Taylor} f(x) = \sum_{k=0}^{\infty } \frac{ f^{k} (a) }{ k! } (x - a)^k
|\kappa   ||  \kappa  
\mbox{Euler}^1 e^{i \varphi } := \cos \varphi + i \sin \varphi
|-
|\lambda   ||  \lambda  
|-
|\mu   ||  \mu  
|-
|\xi   ||  \xi  
|-
|\pi   ||  \pi  
|-
|\rho   ||  \rho  
|-
|\sigma   ||  \sigma  
|-
|\tau   ||  \tau  
|-
|\phi   ||  \phi
|-
|\varphi   ||  \varphi
|-
|\chi   ||  \chi
|-
|\psi   ||  \psi
|-
|\omega   ||  \omega  
|-
| ***
|-
|\Rightarrow   ||  \Rightarrow  
|-
|\rightarrow ||  \rightarrow  
|-
|\Leftarrow ||  \Leftarrow  
|-
|\leftarrow   ||  \leftarrow  
|-
|\Leftrightarrow ||  \Leftrightarrow  
|-
|\vec{x} ||  \vec{x}  
|-
| ***
|-
|(   ||  \left(  
|-
|)   ||  \right)  
|-
|[   ||  \left[  
|-
|]   ||  \right]  
|-
|\{   ||  \left{  
|-
|\}   ||  \right}  
|-
|\textstyle {n \choose k} || {n \choose k}  
|-
| ***
|-
|\Box || \Box
|-
|\forall || \forall
|-
|\exists || \exists
|-
|\in || \in
|-
|\not\in || \not\in
|-
| ***
|-
|\mbox{Taylor} || f(x) = \sum_{k=0}^{\infty } \frac{ f^{k} (a) }{ k! } (x - a)^k
|-
|\mbox{Euler}^1 || e^{i \varphi } := \cos \varphi   + i \sin \varphi  
|}

Revision as of 17:44, 14 January 2007

\textstyle \frac{x}{y} \frac{x}{y} \textstyle \sum_x^n \sum_{x=1}^{n} \textstyle \prod_x^n \prod^{x=1}_{n} \textstyle \int_a^b \int_{a}^{b} f (x)\,dx \textstyle \frac{\partial x}{\partial y} \frac{\partial x}{\partial y} \textstyle \sqrt x \sqrt{x} \textstyle \sqrt[3]{x} \sqrt[3]{x} \textstyle f(x) f(x) \lim \lim_{x\to\infty}

\sin \sin (x) \cos \cos (x) \tan \tan (x) \log \log (x) \ln \ln (x)

\le \le \ge \ge \neq \neq \approx \approx \equiv \equiv \propto \propto \infty \infty

\alpha \alpha \beta \beta \gamma \gamma \delta \delta \epsilon \epsilon \zeta \zeta \eta \eta \theta \theta \vartheta \vartheta \kappa \kappa \lambda \lambda \mu \mu \xi \xi \pi \pi \rho \rho \sigma \sigma \tau \tau \phi \phi \varphi \varphi \chi \chi \psi \psi \omega \omega

\Rightarrow \Rightarrow \rightarrow \rightarrow \Leftarrow \Leftarrow \leftarrow \leftarrow \Leftrightarrow \Leftrightarrow \vec{x} \vec{x}

( \left( ) \right) [ \left[ ] \right] \{ \left{ \} \right} \textstyle {n \choose k} {n \choose k}

\Box \Box \forall \forall \exists \exists \in \in \not\in \not\in

\mbox{Taylor} f(x) = \sum_{k=0}^{\infty } \frac{ f^{k} (a) }{ k! } (x - a)^k \mbox{Euler}^1 e^{i \varphi } := \cos \varphi + i \sin \varphi