TEX/Favorites: Difference between revisions

From Web
Jump to navigation Jump to search
No edit summary
 
mNo edit summary
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
<amsmath>\sideset{}{'}\sum_{n<k,\;\text{$n$ odd}} nE_n</amsmath>
{|
{|
|\textstyle \frac{x}{y}  ||  \frac{x}{y}
|-
|-
|\textstyle \sum_x^n    || \sum_{x=1}^{n}  
| <amsmath>\frac{x}{y}</amsmath>
| \frac{x}{y}
|-
|-
|\textstyle \prod_x^n   |\prod^{x=1}_{n}  
| <amsmath>\sum_{x=1}^{n}</amsmath>
| \sum_{x=1}^{n}
|-
|-
|\textstyle \int_a^b    || \int_{a}^{b} f (x)\,dx
| <amsmath>\prod^{x=1}_{n}</amsmath>
| \prod^{x=1}_{n}
|-
|-
|\textstyle  \frac{\partial x}{\partial y}  || \frac{\partial x}{\partial y} 
| <amsmath>\int_{a}^{b} f (x)\,dx</amsmath>
| \int_{a}^{b} f (x)\,dx
|-
|-
|\textstyle \sqrt x   |\sqrt{x}  
| <amsmath>\frac{\partial x}{\partial y}</amsmath>
| \frac{\partial x}{\partial y}
|-
|-
|\textstyle \sqrt[3]{x} || \sqrt[3]{x}  
| <amsmath>\sqrt{x}</amsmath>
| \sqrt{x}
|-
|-
|\textstyle f(x||  f(x)
| <amsmath>\sqrt[3]{x}</amsmath>
| \sqrt[3]{x}
|-
|-
|\lim  || \lim_{x\to\infty}
| <amsmath>f(x)</amsmath>
| f(x)
|-
|-
| ***
| <amsmath>\lim_{x\to\infty}</amsmath>
| \lim_{x\to\infty}
|-
|-
|\sin   |\sin (x)  
| <amsmath>\sin (x)</amsmath>
| \sin (x)
|-
|-
|\cos   |\cos (x)  
| <amsmath>\cos (x)</amsmath>
| \cos (x)
|-
|-
|\tan   |\tan (x)  
| <amsmath>\tan (x)</amsmath>
| \tan (x)
|-
|-
|\log   |\log (x)  
| <amsmath>\log (x)</amsmath>
| \log (x)
|-
|-
|\ln   |\ln (x)  
| <amsmath>\ln (x)</amsmath>
| \ln (x)
|-
|-
| ***
| <amsmath>\le</amsmath>
| \le
|-
|-
|\le  |\le
| <amsmath>\ge</amsmath>
| \ge
|-
|-
|\ge  |\ge
| <amsmath>\neq</amsmath>
| \neq
|-
|-
|\neq  |\neq
| <amsmath>\approx</amsmath>
| \approx
|-
|-
|\approx  |\approx
| <amsmath>\equiv</amsmath>
| \equiv
|-
|-
|\equiv  |\equiv
| <amsmath>\propto</amsmath>
| \propto
|-
|-
|\propto  |\propto
| <amsmath>\infty</amsmath>
| \infty
|-
|-
|\infty  |\infty
| <amsmath>\alpha</amsmath>
| \alpha
|-
|-
| ***
| <amsmath>\beta</amsmath>
| \beta
|-
|-
|\alpha  |\alpha
| <amsmath>\gamma</amsmath>
| \gamma
|-
|-
|\beta  |\beta
| <amsmath>\delta</amsmath>
| \delta
|-
|-
|\gamma  |\gamma
| <amsmath>\epsilon</amsmath>
| \epsilon
|-
|-
|\delta  |\delta
| <amsmath>\zeta</amsmath>
| \zeta
|-
|-
|\epsilon  |\epsilon
| <amsmath>\eta</amsmath>
| \eta
|-
|-
|\zeta  |\zeta
| <amsmath>\theta</amsmath>
| \theta
|-
|-
|\eta  |\eta
| <amsmath>\vartheta</amsmath>
| \vartheta
|-
|-
|\theta  |\theta
| <amsmath>\kappa</amsmath>
| \kappa
|-
|-
|\vartheta  |\vartheta
| <amsmath>\lambda</amsmath>
| \lambda
|-
|-
|\kappa  |\kappa
| <amsmath>\mu</amsmath>
| \mu
|-
|-
|\lambda  |\lambda
| <amsmath>\xi</amsmath>
| \xi
|-
|-
|\mu  |\mu
| <amsmath>\pi</amsmath>
| \pi
|-
|-
|\xi  |\xi
| <amsmath>\rho</amsmath>
| \rho
|-
|-
|\pi  |\pi
| <amsmath>\sigma</amsmath>
| \sigma
|-
|-
|\rho  |\rho
| <amsmath>\tau</amsmath>
| \tau
|-
|-
|\sigma  |\sigma
| <amsmath>\phi</amsmath>
| \phi
|-
|-
|\tau  |\tau
| <amsmath>\varphi</amsmath>
| \varphi
|-
|-
|\phi  |\phi
| <amsmath>\chi</amsmath>
| \chi
|-
|-
|\varphi  |\varphi
| <amsmath>\psi</amsmath>
| \psi
|-
|-
|\chi  |\chi
| <amsmath>\omega</amsmath>
| \omega
|-
|-
|\psi  |\psi
| <amsmath>\Rightarrow</amsmath>
| \Rightarrow
|-
|-
|\omega  |\omega
| <amsmath>\rightarrow</amsmath>
| \rightarrow
|-
|-
| ***
| <amsmath>\Leftarrow</amsmath>
| \Leftarrow
|-
|-
|\Rightarrow  |\Rightarrow
| <amsmath>\leftarrow</amsmath>
| \leftarrow
|-
|-
|\rightarrow  |\rightarrow
| <amsmath>\Leftrightarrow</amsmath>
| \Leftrightarrow
|-
|-
|\Leftarrow |\Leftarrow
| <amsmath>\vec{x}</amsmath>
| \vec{x}
|-
|-
|\leftarrow  |\leftarrow
| <amsmath>{n \choose k}</amsmath>
| {n \choose k}
|-
|-
|\Leftrightarrow |\Leftrightarrow
| <amsmath>\Box</amsmath>
| \Box
|-
|-
|\vec{x}  |\vec{x}
| <amsmath>\forall</amsmath>
| \forall
|-
|-
| ***
| <amsmath>\exists</amsmath>
| \exists
|-
|-
|(  || \left(
| <amsmath>\in</amsmath>
| \in
|-
|-
||\right)
| <amsmath>\not\in</amsmath>
| \not\in
|-
|-
|[   || \left[
| <amsmath>\mbox{Taylor}   f(x) = \sum_{k=0}^{\infty } \frac{
|f^{k} (a) }{ k! } (x - a)^k</amsmath>
| \mbox{Taylor}  f(x) = \sum_{k=0}^{\infty } \frac{ f^{k} (a) }{ k! } (x - a)^k
|-
|-
|]  ||  \right]
| <amsmath>\mbox{Euler}^1 e^{i \varphi } := \cos \varphi + i
|-
|\sin \varphi</amsmath>
|\{   ||  \left{
| \mbox{Euler}^1 e^{i \varphi } := \cos \varphi + i \sin \varphi
|-
 
|\}   || \right}
|-
|\textstyle {n \choose k} || {n \choose k}
|-
| ***
|-
|\Box || \Box
|-
|\forall || \forall
|-
|\exists || \exists
|-
|\in || \in
|-
|\not\in || \not\in
|-
| ***
|-
|\mbox{Taylor} || f(x) = \sum_{k=0}^{\infty } \frac{ f^{k} (a) }{ k! } (x - a)^k
|-
|\mbox{Euler}^1 || e^{i \varphi } := \cos \varphi   + i \sin \varphi  
|}
|}

Latest revision as of 15:01, 30 October 2008

<amsmath>\frac{x}{y}</amsmath> \frac{x}{y}
<amsmath>\sum_{x=1}^{n}</amsmath> \sum_{x=1}^{n}
<amsmath>\prod^{x=1}_{n}</amsmath> \prod^{x=1}_{n}
<amsmath>\int_{a}^{b} f (x)\,dx</amsmath> \int_{a}^{b} f (x)\,dx
<amsmath>\frac{\partial x}{\partial y}</amsmath> \frac{\partial x}{\partial y}
<amsmath>\sqrt{x}</amsmath> \sqrt{x}
<amsmath>\sqrt[3]{x}</amsmath> \sqrt[3]{x}
<amsmath>f(x)</amsmath> f(x)
<amsmath>\lim_{x\to\infty}</amsmath> \lim_{x\to\infty}
<amsmath>\sin (x)</amsmath> \sin (x)
<amsmath>\cos (x)</amsmath> \cos (x)
<amsmath>\tan (x)</amsmath> \tan (x)
<amsmath>\log (x)</amsmath> \log (x)
<amsmath>\ln (x)</amsmath> \ln (x)
<amsmath>\le</amsmath> \le
<amsmath>\ge</amsmath> \ge
<amsmath>\neq</amsmath> \neq
<amsmath>\approx</amsmath> \approx
<amsmath>\equiv</amsmath> \equiv
<amsmath>\propto</amsmath> \propto
<amsmath>\infty</amsmath> \infty
<amsmath>\alpha</amsmath> \alpha
<amsmath>\beta</amsmath> \beta
<amsmath>\gamma</amsmath> \gamma
<amsmath>\delta</amsmath> \delta
<amsmath>\epsilon</amsmath> \epsilon
<amsmath>\zeta</amsmath> \zeta
<amsmath>\eta</amsmath> \eta
<amsmath>\theta</amsmath> \theta
<amsmath>\vartheta</amsmath> \vartheta
<amsmath>\kappa</amsmath> \kappa
<amsmath>\lambda</amsmath> \lambda
<amsmath>\mu</amsmath> \mu
<amsmath>\xi</amsmath> \xi
<amsmath>\pi</amsmath> \pi
<amsmath>\rho</amsmath> \rho
<amsmath>\sigma</amsmath> \sigma
<amsmath>\tau</amsmath> \tau
<amsmath>\phi</amsmath> \phi
<amsmath>\varphi</amsmath> \varphi
<amsmath>\chi</amsmath> \chi
<amsmath>\psi</amsmath> \psi
<amsmath>\omega</amsmath> \omega
<amsmath>\Rightarrow</amsmath> \Rightarrow
<amsmath>\rightarrow</amsmath> \rightarrow
<amsmath>\Leftarrow</amsmath> \Leftarrow
<amsmath>\leftarrow</amsmath> \leftarrow
<amsmath>\Leftrightarrow</amsmath> \Leftrightarrow
<amsmath>\vec{x}</amsmath> \vec{x}
<amsmath>{n \choose k}</amsmath> {n \choose k}
<amsmath>\Box</amsmath> \Box
<amsmath>\forall</amsmath> \forall
<amsmath>\exists</amsmath> \exists
<amsmath>\in</amsmath> \in
<amsmath>\not\in</amsmath> \not\in
<amsmath>\mbox{Taylor} f(x) = \sum_{k=0}^{\infty } \frac{ f^{k} (a) }{ k! } (x - a)^k</amsmath> \mbox{Taylor} f(x) = \sum_{k=0}^{\infty } \frac{ f^{k} (a) }{ k! } (x - a)^k
<amsmath>\mbox{Euler}^1 e^{i \varphi } := \cos \varphi + i \sin \varphi</amsmath> \mbox{Euler}^1 e^{i \varphi } := \cos \varphi + i \sin \varphi