
Networks Simulation
Corso di Tecnologie di Infrastrutture di Reti

Carlo Augusto Grazia, Martin Klapez, Natale Patriciello

Department of Engineering Enzo Ferrari
University of Modena and Reggio Emilia

Modena, 27 May 2015

Marnatarlo (UNIMORE) Networks Simulation 27 May 2015 1 / 34

Overview

Hands on ns-3

Precondition: Last lesson on ns-3 simulator
Today: Write C++ code to perform simulations
Postcondition: To be able to hack ns-3 (beginner level)

*nix machine required, have you installed the software?

We are three, you up to 20, let’s do a great job togheter

Do you want a mini-thesis or a thesis on Reti? It’s better to pay
attention :-)

Marnatarlo (UNIMORE) Networks Simulation 27 May 2015 2 / 34

Install ns3: Using git as source code manager

On Linux (he -- point to Nat -- hates Ubuntu):

$ git clone https://github.com/nsnam/ns-3-dev-git.git
$ cd ns-3-dev-git
$./waf configure --enable-examples
$./waf --run first

On Mac OS X

$ git clone https://github.com/nsnam/ns-3-dev-git.git
$ cd ns-3-dev-git
$./waf configure --enable-examples
$./waf --run first

Marnatarlo (UNIMORE) Networks Simulation 27 May 2015 3 / 34

Last Lesson..

What has been shown:
Examples of simulations: included in sources, they had been ran and the
pcap output has been shown

TCP Bulk: Two nodes exchange data over a point-to-point

n0 n1
BW 10 Mbps

Delay 20 ms

Global routing: Two nodes compete for a bottleneck link using UDP

n0

n1

1 Mbps
2 ms

n2 n3

5 Mbps
2 ms

15 Mbps 10 ms

Marnatarlo (UNIMORE) Networks Simulation 27 May 2015 4 / 34

This Lesson..

What YOU will do today:
Learn how to “interact” with simulations, modify them to suit your needs,
and create your own simulations

Time
Attributes
Callbacks
Traced Values

Marnatarlo (UNIMORE) Networks Simulation 27 May 2015 5 / 34

Time

Teacher..
You promised us exercises!

Let me introduce time.. simulated time. And before that, the core object
of ns-3:

Example
What is the Simulator class? It is the public entry point to access event
scheduling facilities. Once a couple of events have been scheduled to start
the simulation, the user can start to execute them by entering the
simulator main loop (call Simulator::Run). Once the main loop starts
running, it will sequentially execute all scheduled events in order from
oldest to most recent until there are either no more events left in the event
queue or Simulator::Stop has been called.

Marnatarlo (UNIMORE) Networks Simulation 27 May 2015 6 / 34

Scheduling events

You can schedule events through Callbacks. The API is (MEM is a typedef
which indicates a “function pointer”, and OBJ indicates a pointer to an
instance):

Simulator::Schedule (Time const &time, MEM mem_ptr, OBJ obj);

or

Simulator::ScheduleWithContext (uint32_t context,
Time const &time, MEM mem_ptr, OBJ obj);

What is context?
Context is an advanced feature. In simple words, it is the node id on which
the callback should be executed in.

Marnatarlo (UNIMORE) Networks Simulation 27 May 2015 7 / 34

Searching through API

Gathering more information on classes and API
I introduced the class Time. I can do a slide with its meaning, how to use
it, and more...

BUT...
I’m here to teach you on HOW to gather information yourself! So.. live

demonstration: seach “ns-3 Time class” on Google

Marnatarlo (UNIMORE) Networks Simulation 27 May 2015 8 / 34

Example of scheduling

Static functions (C-style)

static void MyFn ()
{

// ... do something
}

int main ()
{

// ... initialize

Simulator::Schedule (Seconds(5.0), &MyFn);
}

Marnatarlo (UNIMORE) Networks Simulation 27 May 2015 9 / 34

Example of scheduling

Classes (C++-style)

class MyClass
{

void MyMember ()
{

// ... do something
}

}

int main ()
{

// ... initialize

MyClass myClass;

Simulator::Schedule (Seconds(5.0), &MyClass::MyMember, &myClass);
} Marnatarlo (UNIMORE) Networks Simulation 27 May 2015 10 / 34

Time to code!

Open your favorite text editor (+1 for vim)
Point it to examples/tcp/tcp-bulk-send.cc
Do you remember it ?

First exercise:
Write a static function which prints “Hello, World” to standard output.
Schedule it at the 15th second of simulated time.

Command:
./waf - -run "tcp-bulk-send"

Marnatarlo (UNIMORE) Networks Simulation 27 May 2015 11 / 34

Solution

static void Hello ()
{

std::cout « "Hello, World!" « std::endl;
}

...

Simulator::Schedule (Seconds(15.0), &print);

//
// Now, do the actual simulation.
//
NS_LOG_INFO ("Run Simulation.");

...

Marnatarlo (UNIMORE) Networks Simulation 27 May 2015 12 / 34

Two words on logging

std::cout and std::err are c++ standard, you can use them
but it is appreciated to use different level of printed output
you don’t need all the prints all times: just write them, and then select
the detail level you need

Log levels
There are currently seven levels of log messages of increasing verbosity
defined in the system: ERROR, WARN, DEBUG, INFO, FUNCTION,
LOGIC, ALL

Components
Logging is selective. It means that you can enable different log levels on
different component. Usually, a component is a class.

Marnatarlo (UNIMORE) Networks Simulation 27 May 2015 13 / 34

Two words on logging

How to use them
NS_LOG_[LEVEL] ("Your message");

...

NS_LOG_UNCOND ("This is a print. oneVar= " « oneVar);

UNCOND is the "jolly" level. Always printed (syntactic replacement of
std::cout) If you want to enable all messages ranging from DEBUG level to
lower levels (the lowest is ERROR), run your program with:

export ’NS_LOG=ClassToDebug=level_debug’
./waf --run "tcp-bulk-send"

Marnatarlo (UNIMORE) Networks Simulation 27 May 2015 14 / 34

Time to code!

Declare a component
Do you notice the macro NS_LOG_COMPONENT_DEFINE? It defines
the component for the logging system.

Exercise:
Enable (and see into a terminal) the INFO messages of
TcpBulkSendExample.

Marnatarlo (UNIMORE) Networks Simulation 27 May 2015 15 / 34

Time to code!

Solution:

...
NS_LOG_INFO("Hello world!");
...

export ’NS_LOG=TcpBulkSendExample=level_all’
./waf --run "tcp-bulk-send"

Marnatarlo (UNIMORE) Networks Simulation 27 May 2015 16 / 34

Attributes

In ns-3 simulations, there are two main configuration aspects:

The simulation topology and how objects are connected.
The values used by the models instantiated in the topology.

We will focus on the second item: how the many values in use in ns-3 are
organized, documented, and modifiable by ns-3 users. The ns-3 attribute
system is also the underpin of how traces and statistics are gathered in the
simulator.

Marnatarlo (UNIMORE) Networks Simulation 27 May 2015 17 / 34

Objects and their attributes

Object in ns-3
Many ns-3 objects inherit from the Object base class. These objects have
some additional properties that we exploit for organizing the system and
improving the memory management of our objects.

TypeId
ns-3 classes that derive from class Object can include a metadata class
called TypeId that records meta-information about the class, for use in the
object aggregation and component manager systems:

A unique string identifying the class.
The base class of the subclass, within the metadata system.
The set of accessible constructors in the subclass.
A list of publicly accessible properties (“attributes”) of the class.

Marnatarlo (UNIMORE) Networks Simulation 27 May 2015 18 / 34

Example of TypeId

Let’s view src/point-to-point/model/point-to-point-net-device.cc togheter:

TypeId
PointToPointNetDevice::GetTypeId (void)
{

static TypeId tid =
TypeId ("ns3::PointToPointNetDevice")

.SetParent<NetDevice> ()

.SetGroupName ("PointToPoint")

.AddConstructor<PointToPointNetDevice> ()

Marnatarlo (UNIMORE) Networks Simulation 27 May 2015 19 / 34

Example of TypeId - Continued

.AddAttribute (
"Mtu", "The MAC-level Maximum Transmission Unit",
UintegerValue (DEFAULT_MTU),
MakeUintegerAccessor (&PointToPointNetDevice::SetMtu,

&PointToPointNetDevice::GetMtu),
MakeUintegerChecker<uint16_t> ())

.AddAttribute (
"DataRate",
"The default data rate for point to point links",
DataRateValue (DataRate ("32768b/s")),
MakeDataRateAccessor (&PointToPointNetDevice::m_bps),
MakeDataRateChecker ())

Marnatarlo (UNIMORE) Networks Simulation 27 May 2015 20 / 34

Example of TypeId - Explained

The SetParent<NetDevice> () call in the definition above is used in
conjunction with our object aggregation mechanisms to allow safe up- and
down-casting in inheritance trees during GetObject (). It also enables
subclasses to inherit the Attributes of their parent class.
The AddConstructor<PointToPointNetDevice> () call is used in
conjunction with our abstract object factory mechanisms to allow us to
construct C++ objects without forcing a user to know the concrete class of
the object she is building.

Marnatarlo (UNIMORE) Networks Simulation 27 May 2015 21 / 34

Example of TypeId - Explained

The three calls to AddAttribute () associate a given string with a
strongly typed value in the class. Notice that you must provide a help
string which may be displayed, for example, via command line processors.
Each Attribute is associated with mechanisms for accessing the underlying
member variable in the object (for example, MakeUintegerAccessor ()
tells the generic Attribute code how to get to the node ID above). There
are also "Checker" methods which are used to validate values against range
limitations, such as maximum and minimum allowed values.

Marnatarlo (UNIMORE) Networks Simulation 27 May 2015 22 / 34

Creation of PointToPointNetDevice

When users want to create objects, they will usually call some form of
CreateObject (),:

Ptr<PointToPointNetDevice> n;
...

n = CreateObject<PointToPointNetDevice> ();

Marnatarlo (UNIMORE) Networks Simulation 27 May 2015 23 / 34

Creation of PointToPointNetDevice

Or more abstractly, using an object factory, you can create an object
without even knowing the concrete C++ type:

ObjectFactory factory;
const std::string typeId = "ns3::PointToPointNetDevice";
factory.SetTypeId (typeId);
Ptr<Object> node = factory.Create <Object> ();

Both of these methods result in fully initialized attributes being available in
the resulting Object instances.
We next discuss how attributes (values associated with member variables or
functions of the class) are plumbed into the above TypeId.

Marnatarlo (UNIMORE) Networks Simulation 27 May 2015 24 / 34

Changing attributes

First: Identify the attribute
Look into source code of the class, then see the attributes declared in its
TypeId

Example for DropTailQueue:

.AddAttribute ("MaxPackets",
"The maximum number of packets accepted by this DropTailQueue.",
UintegerValue (100),
MakeUintegerAccessor (&DropTailQueue::m_maxPackets),
MakeUintegerChecker<uint32_t> ())

Marnatarlo (UNIMORE) Networks Simulation 27 May 2015 25 / 34

Changing attributes - Default, for all instances

Change the attribute for all instances in the simulation:

Config::SetDefault (path, value)
Config::SetDefault ("ns3::DropTailQueue::MaxPackets",

UintegerValue (80));

The path is a string, composed by ns3::ClassName::AttributeName
To know the type of the value, check the default value in the TypeId
declaration

Marnatarlo (UNIMORE) Networks Simulation 27 May 2015 26 / 34

Changing attributes - For only one instance

Change the attribute for only one instance:

Ptr<Queue> q = CreateObject<DropTailQueue> ();
q->SetAttribute ("MaxPackets", UintegerValue (80));

There are many other ways:
CreateObjectWithAttributes
API in *Helpers (do you remember what happens with
PointToPointHelper?)
Config Namespace Path
("/NodeList/0/DeviceList/0/TxQueue/MaxPackets")

Marnatarlo (UNIMORE) Networks Simulation 27 May 2015 27 / 34

Time to code!

Exercise:
Modify the hello function in tcp-bulk-send, in order to change the datarate
of the point to point link to 2 Mbit/s at the 15th second of simulated time

Hint
Read PointToPointNetDevice documentation for attributes
Check how to get a PointToPointNetDevice pointer somewhere (from
node or from container)
Pass the pointer as parameter for the hello function
Do the change

Marnatarlo (UNIMORE) Networks Simulation 27 May 2015 28 / 34

Solution

TODO

Marnatarlo (UNIMORE) Networks Simulation 27 May 2015 29 / 34

Callbacks

Definition of callback
In computer programming, a callback is a piece of executable code that is
passed as an argument to other code, which is expected to call back
(execute) the argument at some convenient time. The invocation may be
immediate as in a synchronous callback, or it might happen at a later time
as in an asynchronous callback. In all cases, the intention is to specify a
function or subroutine as an entity that is, depending on the language,
more or less similar to a variable.
Programming languages support callbacks in different ways, often
implementing them with subroutines, lambda expressions, blocks, or
function pointers. (Wikipedia)

Marnatarlo (UNIMORE) Networks Simulation 27 May 2015 30 / 34

Callbacks

How they are related to ns-3?
Short answer: thanks to callbacks, coupling between classes is not strict:
register the callbacks you need/want, and make the simulator do the hard
work

Marnatarlo (UNIMORE) Networks Simulation 27 May 2015 31 / 34

Example of C-style callback

Consider a function:

static double
CbOne (double a, double b)
{

std::cout « "invoke cbOne a=" « a « ", b=" « b « std::endl;
return a;

}

Consider also the following main program snippet:

int main (int argc, char *argv[])
{

// return type: double
// first arg type: double
// second arg type: double
Callback<double, double, double> one;

}
Marnatarlo (UNIMORE) Networks Simulation 27 May 2015 32 / 34

Example of C-style callback

Did you notice any similarity?

static double CbOne (double a, double b)
^ ^ ^
| | |
| | |

Callback<double, double, double> one;

You can only bind a function to a callback if they have the matching
signature. The first template argument is the return type, and the
additional template arguments are the types of the arguments of the
function signature.

Marnatarlo (UNIMORE) Networks Simulation 27 May 2015 33 / 34

Example of C-style callback

Now, let’s instantiate the callback:

// build callback instance which points to cbOne function
one = MakeCallback (&CbOne);

Then, later in the program, if the callback is needed, it can be used as
follows:

NS_ASSERT (!one.IsNull ());

// invoke cbOne function through callback instance
double retOne;
retOne = one (10.0, 20.0);

Marnatarlo (UNIMORE) Networks Simulation 27 May 2015 34 / 34

Example of C++-style callback

In C++, we have classes. What we need to pass cbTwo method as a
callback?

class MyCb {
public:

int CbTwo (double a) {
std::cout « "invoke cbTwo a=" « a « std::endl;
return -5;

}
};

Marnatarlo (UNIMORE) Networks Simulation 27 May 2015 35 / 34

Example of C++-style callback

Just pass the pointer to the object as second argument.

int main ()
{

...
// return type: int
// first arg type: double
Callback<int, double> two;
MyCb cb;
// build callback instance which points to MyCb::cbTwo
two = MakeCallback (&MyCb::CbTwo, &cb);
...

}

Marnatarlo (UNIMORE) Networks Simulation 27 May 2015 36 / 34

Other callback API

Null callbacks:

two = MakeNullCallback<int, double> ();
NS_ASSERT (two.IsNull ());

Bound callbacks:

static void DefaultSink (Ptr<PcapFileWrapper> file, Ptr<const Packet> p);
...
MakeBoundCallback (&DefaultSink, file);

We can call the callback with only the packet as argument!

m_promiscSnifferTrace (m_currentPkt);

Marnatarlo (UNIMORE) Networks Simulation 27 May 2015 37 / 34

Tracing system

Simulation output
The whole point of running an ns-3 simulation is to generate output for
studies. You have two basic strategies to obtain output from ns-3: using
generic pre-defined bulk output mechanisms and parsing their content to
extract interesting information; or somehow developing an output
mechanism that conveys exactly (and perhaps only) the information
wanted.

Marnatarlo (UNIMORE) Networks Simulation 27 May 2015 38 / 34

Tracing system

Tracing system
Trace sources are entities that can signal events that happen in a
simulation and provide access to interesting underlying data. For example,
a trace source could indicate when a packet is received by a net device and
provide access to the packet contents for interested trace sinks. A trace
source might also indicate when an interesting state change happens in a
model. For example, the congestion window of a TCP model is a prime
candidate for a trace source. Every time the congestion window changes,
the connected trace sinks are notified with the old and new value.

Marnatarlo (UNIMORE) Networks Simulation 27 May 2015 39 / 34

Identify traced values

By looking the source code of the desidered TypeId. Find
“.AddTraceSource”
By looking the definition of the desidered class. Find “TracedValue...”
By looking into Doxygen documentation of the desidered class

Example, from point-to-point-net-device.cc :

.AddTraceSource ("MacTx",
“Trace source indicating a packet has arrived ”
“for transmission by this device”,
MakeTraceSourceAccessor (&PointToPointNetDevice::m_macTxTrace),
“ns3::Packet::TracedCallback”)

Marnatarlo (UNIMORE) Networks Simulation 27 May 2015 40 / 34

Create the callback

A TracedValue is born to be connected..
... to a callback. To create it, you need to discover its signature (return
type and parameters): it is described in the TypeId

.AddTraceSource ("MacTx",
“Trace source indicating a packet has arrived”
“for transmission by this device”,
MakeTraceSourceAccessor (&PointToPointNetDevice::m_macTxTrace),
"ns3::Packet::TracedCallback")

Marnatarlo (UNIMORE) Networks Simulation 27 May 2015 41 / 34

Create the callback

The type is "ns3::Packet::TracedCallback", which means
TracedCallback in Packet class.
A rapid search on Doxygen shows:

typedef void(* TracedCallback)
(const Ptr< const Packet > packet)

Marnatarlo (UNIMORE) Networks Simulation 27 May 2015 42 / 34

Create the callback

Now we know the type, let’s create our static callback:

static void
MyTraceCb (const Ptr< const Packet > pkt)
{

...
}

Marnatarlo (UNIMORE) Networks Simulation 27 May 2015 43 / 34

Connect the value to the callback

...

Ptr<PointToPointNetDevice> dev = ... ;

dev->TraceConnectWithoutContext ("MacTx",
MakeCallback (&MyTraceCb));

...

Marnatarlo (UNIMORE) Networks Simulation 27 May 2015 44 / 34

Outcome

So, that’s all?
There are three levels of interaction with the tracing system:

Beginning users can easily control which objects are participating in
tracing.
Intermediate users can extend the tracing system to modify the output
format generated or use existing trace sources in different ways,
without modifying the core of the simulator.
Advanced users can modify the simulator core to add new tracing
sources and sinks.

Marnatarlo (UNIMORE) Networks Simulation 27 May 2015 45 / 34

Time to code!

Get your hands on tcp-bulk-send and:

Easy Exercise:
Display the congestion window evolution of the TCP socket

Medium Exercise:
Lower the data rate of the p2p link (e.g. 10Kbit/s), then display all the
losses in the associated DropTailQueue

Intermediate Exercise:
Add a Traced value to the source code of BulkSendApplication which
indicates when it has transmitted all the data. Then, connect a Callback
which prints this information to the screen.

Marnatarlo (UNIMORE) Networks Simulation 27 May 2015 46 / 34

Time to code!

The End!
Send your solutions by mail. Working ones will be published, best ones will
be included in the presentation for next year (with appropriate credit):
natale.patriciello@unimore.it

Marnatarlo (UNIMORE) Networks Simulation 27 May 2015 47 / 34

