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Abstract— One of the main issue of any control strategy
for braking systems is to face the many uncertainties due to
the strong spread of the system’s parameters: road conditions,
hydraulic actuators, tire behaviour, etc. Moreover, the need for
cheap components limits both the number of sensors and the
quality of the actuators.

This paper proposes a self-tuning control strategy for braking
systems. The proposed control strategy is based on two light
assumptions: 1) the tire longitudinal force as a function of
the tire slip has always a unique minimum; 2) the hydraulic
actuators can increase, decrease and hold the braking pressure
within a limited delay. Only the measure of the wheel rotational
speed and the estimate of the wheel angular acceleration
are required. The control strategy is tested by simulation
experiments.

I. INTRODUCTION

Antilock braking systems (ABS) are now a commonly
installed feature in road vehicles. They are designed to
stop vehicles as safely and quickly as possible. Safety is
achieved by maintaining the steering effectiveness and trying
to reduce braking distances over the case where the brakes
are controlled by the driver during a “panic stop”, see [1].

The ABS control systems are based on the typical tire
behaviour described in [2] and briefly shown in Fig. 1. As
demonstrated in [3], optimal braking (in terms of minimum
traveled distance) occurs when the longitudinal force Fx

operates at its minimum value along the force-slip curve. The
slip value corresponding to the minimum longitudinal force
Fx depends also on the road conditions, vehicle speed, the
normal force, the tire temperature, the steering angle, etc.
In all cases however the shape of the force-slip curve has
a unique minimum for some value of the slip λ. The main
issue of the ABS control strategies is to track the optimal slip
value λopt corresponding to the minimum longitudinal force
Fx using the smallest number of sensors, using the cheapest
hardware and facing the uncertainties due to both the aging
of components and the unknown working and environmental
conditions. Different control techniques were applied to solve
this challenging problem.

Many authors have presented control strategies based on
the slip control, see [4], [5], [6], [7] and [8]. Theoretically,
the method of slip control is the ideal method. However,
two problems arise: the (unknown) optimal slip value must
be identified and the vehicle speed must be measured (as
in [5], [6]) or estimated in a low cost and reliable way. To
overcome these problems, either pressure measurement have
been proposed (see [9]) or the braking torque is supposed

N
z

vx

w
Re

wt
wJ

Fx

Fx(l)

l

lopt

Accelerating

Braking

N
z

vx

w
Re

wt
wJ

Fx

N
z

vx

w
Re

wt
wJ

Fx

Fx(l)

l

lopt

Accelerating

Braking

Fx(l)

l

lopt

Accelerating

Braking

Fig. 1. Basic tire behaviour: slip effects on the longitudinal force.

to be known (see [10], [11], [12]). These solutions lead to
very good performances, but do not fit the cost requirements.
Moreover, many papers give important theoretical results but
do not deal with the dynamics of the actuators.

Currently most commercial ABSs use a look-up tabular
approach based on wheel acceleration thresholds, see [1],
[13] and [14]. These tables are calibrated through iterative
laboratory experiments and engineering field tests. Therefore,
these systems are not adaptive and issues such as robustness
are not addressed.

The work proposed in this paper shows that it is possible
to track the optimal slip value by measuring only the
wheel speed and estimating the wheel acceleration. The
proposed control strategy can be seen as a minimum seek
algorithm based on the phases when the braking pressure
(not measured) is kept constant. During these phases the
strategy can infer the control action that will increase the
braking force. This control strategy is robust with respect
to adhesion variations, takes into account the dynamics of
the actuators and it is almost hardware independent. The
proposed strategy is based on the same assumptions and
on the same models usually presented in the literature.
Furthermore, differently from the cited papers, the proposed
approach takes into account the dynamics of the valves and
does not require the measure of the slip, of the hydraulic
pressure and of the braking torque.

The paper is organized as follows. The dynamic model of
a standard braking system is described in Section II. Based
on this model, the basic operating principle of the proposed
control is explained in Section III. The control strategy is
then described in Section IV and tested by simulations in
Section V. Finally some conclusions are drawn in Section VI.
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Fig. 2. Schematic of the standard antilock brake system for one wheel.

II. DYNAMIC MODEL OF A BRAKING SYSTEM

The braking system consists of three subsystems: the tires,
the vehicle and the electro-hydraulic actuators.

One of the most widely used tire model is based on the
Pacejka’s “magic formula”, see [2]. This is a set of static
maps which give the tire forces (longitudinal force Fx, lateral
force Fy and self-aligning torque Mz) as a function of the
longitudinal slip λ, the slip angle α, the camber angle γ
and the vertical load Nz . The static maps are obtained by
interpolating experimental data. The longitudinal slip rate λ
during braking is defined as:

λ =
ω Re − vx

vx

(1)

where ω denotes the wheel angular speed, Re is the rolling
radius and vx is the longitudinal speed of the wheel center in
forward direction, see Fig. 1. For a deceleration with constant
slip and camber angles (longitudinal braking), vx is the speed
of the vehicle and a qualitative example of the longitudinal
force Fx(λ) is shown in Fig. 1.

The dynamic behaviour of a wheel during braking is
described (see [7],[14], etc) by the differential equation:

Jwω̇ = −Kbrk P − Re Fx(λ) (2)

where P is the oil pressure in the braking system, Kbrk

denotes the brake gain, τw = −Kbrk P is the braking torque
and Fx(λ) is the tire longitudinal force.

In this work we consider a simplified model of a single
wheel braking vehicle, the dynamics of this quarter vehicle
model is described by:

Mv̇x = Fx(λ) − Fa (3)

where M is the mass of the quarter vehicle and Fa is the
aerodynamic drag force. During braking Fx(λ) is negative.
Since both Fx(λ) and Fa are limited, it is possible to
find the minimum car acceleration Amin

x (maximum vehicle
deceleration) such that v̇x ≥ Amin

x always.
The control strategy (proposed in Section Sec. IV) is

almost independent from the hydraulic structure, the only
requirement is that the delay of the actuators is limited above
by a known value Td. However, to get the simulation results

of Sec. V, the standard (see [9], [14], [15], etc) electro-
hydraulic system shown in Fig. 2 has been considered. This
system is modeled according to [9] with the addition of a
transient to take into account the dynamics of the valves. The
duration of the transient is lower than a known value Td. The
master cylinder, the pump and the low pressure reservoir are
shared among the 4 wheels, see [1]. Each wheel has two
valves: a built valve between the master cylinder and the
wheel cylinder and a damp valve between the wheel cylinder
and the low pressure reservoir. Both valves are on/off devices
and, after a transient, they can only be in two positions:
closed or open. This hydraulic structure allows only three
control actions:

1) INCREASE: the built valve is open and the damp valve
is closed. The braking pressure P increases.

2) HOLD: both the built valve and the damp valve are
closed. The braking pressure P , at the end of a
transient, can be assumed to be constant.

3) DECREASE: the built valve is closed and the damp
valve is open. The braking pressure P decreases.

According to [9], the dynamics of the braking pressure can be
modeled by means of a flow through the two valve orifices:

Cw

dP

dt
=Ab h(cb)

√

2

ρ
(Pmas−P )−Ad h(cd)

√

2

ρ
(P−Plow)

(4)
the coefficients cb ∈ [0, 1] (built valve) and cd ∈ [0, 1]
(damp valve) are 0 when the corresponding valve is closed,
1 when the valve is completely opened. The dynamics of the
actuators is described by:

ċi =







0 if ci = 1 and ui ≥ 0
0 if ci = 0 and ui ≤ 0
ui/Td else

h(c) =

{

0 if c ≤ c0

(c − c0)/(1 − c0) if c > c0

(5)

where ui for i = b, d are the control commands which can
take the values 0 or 1. The above relations mean that each
valve takes the time Td to completely open or close. The
parameter c0 ∈ [0, 1) represents the valve dead zone. If the
valve is completely closed (cb = 0 or cd = 0), it takes a time
c0 Td to begin to open the valve.

The model of the braking system presented here corre-
sponds to the models described in the literature. Furthermore,
the dynamics of the valves is taken into account with a
description close to the real hardware.

III. BASIC OPERATING PRINCIPLE

Optimal braking occurs when the longitudinal force Fx

operates at its minimum value along the force-slip curve. The
proposed ABS control strategy can be seen as a minimum-
seek algorithm. Since the force-slip curve has always a
minimum, it is first necessary to determine whether the
operating point lies in the left or in the right region with
respect to this minimum. Then the hydraulic actuators are
operated to switch from one region to the other. By this
way, a “limit cycle” around the optimal slip value arises and
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Fig. 3. Qualitative P-λ plot. The dotted line denotes the curve P0(λ, ω̇0)
where λ̇ = 0. The dashed curve P (λ, ω̇N ) is within the region where
λ̇ < 0, the solid curve P (λ, ω̇P ) is within the region where λ̇ > 0.

it guarantees that the longitudinal force Fx varies around its
minimum.

Computing the oil pressure in the braking system P from
equation (2) we obtain:

P (λ, ω̇) =
−Re Fx(λ) − Jwω̇

Kbrk

(6)

For a constant value of ω̇ = a the curve P (λ, a) has the same
shape of the curve Fx(λ). Moreover a2 > a1 ⇒ P (λ, a2) <
P (λ, a1), consequently any acceleration ω̇ defines an unique
curve P (λ, ω̇) that does not intersect any other P (λ, ω̇) curve
(see Fig. 3), or given P and λ the acceleration ω̇ is uniquely
determined. For any ω̇ the peak of the curve P (λ, ω̇) happens
for the same value of λ = λopt. These properties are shown
in Fig. 3. This “P-λ plot” is used in the sequel of the paper
both to analyze the dynamic behaviour of the tire during
braking and to develop the proposed control strategy. The
torque-spin diagram presented in [14] is similar to the P-λ
plot. This torque-spin plot is introduced in [14] to explain the
design of an ABS controller on the basis of an approximated
piecewise tire characteristic. The P-λ plot presented here is
based on equation (6) and then embeds the (unknown) true
tire characteristic.

A wealth of information can be found matching the P-λ
plot with the time derivative of the slip rate λ. From (1) the
time derivative of the slip λ is:

λ̇ = Re

ω̇ vx − ω v̇x

v2
x

(7)

where v̇x is the longitudinal acceleration Ax of the vehicle.
Note that when vx is reaching zero, the slip λ can vary
faster than at high longitudinal speeds. This explains why
the worst performance of the ABS controllers happens
usually at low speed.

Property 1: if ω̇ ≥ 0 then λ̇ > 0. Proof: the sign of the
slip derivative λ̇ is the sign of the term ω̇ vx −ω v̇x. During
braking v̇x ≤ 0 and ω is limited by the vehicle speed: vx ≥
Reω ≥ 0. If ω̇ ≥ 0 then λ̇ > 0 and the slip λ increases.

Property 2: it exists a limited angular acceleration value ω̇N

such that if ω̇ ≤ ω̇N then λ̇ < 0. Proof: since the minimum
longitudinal acceleration v̇x (maximum braking at the best
conditions) is limited Amin

x ≤ v̇x ≤ 0 and during braking
vx ≥ Reω ≥ 0, it exists a limited angular acceleration value
such that λ̇ < 0 is ensured. This acceleration value can be
easily found to be ω̇N = Amin

x /Re indeed:

ω̇ <
Amin

x

Re

=
Amin

x ω

Reω
≤

Amin
x ω

vx

≤
v̇xω

vx

⇒ λ̇ < 0

Let ω̇p ≥ 0 be a design parameter. If ω̇ ≥ ω̇p then, thanks
to Property 1, λ̇ > 0. Let ω̇n ≤ ω̇N < 0 be another design
parameter, thanks to Property 2, if ω̇ ≤ ω̇n then λ̇ < 0. Both
ω̇p and ω̇n are “free” parameters that can be tuned to achieve
the best possible braking performance.

Somewhere between the two curves P (λ, ω̇N ) (where λ̇ <
0) and P (λ, ω̇P ) (where λ̇ > 0) lies the curve P0(λ, ω̇0) | λ̇ =
0, see Fig. 3. Below [above] the curve P0(λ, ω̇0) the slip
increases [decreases] for any value of λ and ω̇. If the pressure
P is kept constant, the points on P0(λ, ω̇0) for λ > λopt are
stable equilibrium points, while the points on P0(λ, ω̇0) for
λ < λopt are unstable equilibrium points.

For any oil pressure P , if ω̇ ≥ ω̇P the slip ratio λ
is increasing, if ω̇ ≤ ω̇N the slip ratio λ is decreasing.
Consequently by measuring the wheel acceleration ω̇ it is
possible to infer some information about the slip ratio. The
next step is to find if an operating point of the tire lies in
the stable or in the unstable region. Let compute the time
derivative of equation (2):

Jw ω̈ = −Kbrk Ṗ −
d Fx(λ)

d λ
λ̇ (8)

The following two properties allow to find where the
operating point of the tire is in some working conditions:

Property 3: if P is constant, ω̇ ≤ ω̇n and ω̈ < 0 then
λ < λopt. Proof: since ω̇ ≤ ω̇n from Property 2 follows
λ̇ < 0. The property can now be derived from equation (8)
whit Ṗ = 0.

Property 4: if P is constant, ω̇ ≥ ω̇p and ω̈ < 0 then
λopt < λ ≤ 0. Proof: since ω̇ ≥ ω̇p from Property 1 follows
λ̇ > 0. The property can now be derived from equation (8)
whit Ṗ = 0.

IV. SELF-TUNING CONTROL STRATEGY

The proposed control strategy is based on the following
assumptions and requirements:

A.1) During the HOLD phases the oil pressure P and the
braking torque τw = −KbrkP remain constant. This
can be considered true at least for short periods.

A.2) The wheel angular speed ω is measured. The wheel
angular acceleration ω̇ is measured or estimated.

A.3) Each control action (HOLD, INCREASE and DE-
CREASE) is ensured within a limited delay. The max-
imum delay Td is known.

A.4) The tire characteristic Fx(λ) has a unique minimum.
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Fig. 4. State chart of the proposed control strategy.

Let k denote the current sampling instant and let T be the
sampling period of the controller.

Properties 3) and 4) of the previous section requires the
second derivative of the wheel speed. This is a problem in
a real applications where only the wheel speed is measured.
To overcome this problem, the acceleration variation ∆ω̇(k)
is measured instead of the second derivative ω̈. A method
to get a reliable measure, is to compute ∆ω̇(k) by linearly
interpolating the acceleration values ω̇(i) for i=k−nh, ..., k
where nh ∈ N is a design parameter that denotes the number
of sampling periods that are needed to get a reliable measure
of ∆ω̇(k). With a small nh, if the acceleration variation is
small the measurement noise will affect the measure. With
good low-noise sensors nh can be small.

The proposed control strategy is based on a 7 state
algorithm. The state chart of the algorithm is shown in
Fig. 4. The basic working cycle is given by the sequence
of states (1)-(2)-(3)-(4)-(5)-(6)-(1), see Fig 5. When the
control strategy is active, the control commands can only
be HOLD, INCREASE or DECREASE. For some states,
a simple initialization assignement is executed once when
the algorithm enters the state. The events of each state are
checked following the given sequence. The description of the
7 states is the following:

(0) Control command: none
Operations:

- if “emergency brake” then next state = (3).
Description:
The ABS control is not active. If a “emergency brake”
is detected the ABS control is activated. The activation
mode does not affect the behaviour of the proposed
control and it is out of the scope of the paper.

(1) Control command: HOLD (Initialization: k0 := k)
Events:

- if ω = 0 then next state = (3).
- if (k − k0)T ≥ Td then next state = (2).

Description:
Actuators delay compensation. When (k − k0)T ≥ Td

the actuators delay has been compensated and the
HOLD phase has certainly begun.
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Fig. 5. Basic working cycle represented on the P-λ plot.

(2) Control command: HOLD (Initialization: k0 := k)
Events:

- if ω = 0 then next state = (3).
- if ω̇ ≥ ω̇p then next state = (5).
- if (k − k0) ≥ nh and ∆ω̇(k) ≤ 0 then next state

= (3). Case (a) of Fig 5.
- if ω̇ > ω̇n then next state = (6). Case (c) of Fig 5.

Description:
Actuators delay was compensated while in state (1) or
(4), the HOLD phase is established and the pressure
P can be considered constant. If (k − k0) ≥ nh the
measure of ∆ω̇(k) can be considered as reliable.
The three cases (a), (b) and (c) of Fig 5 are now
possible. Case (a) corresponds to property 3). In case
(b) the HOLD control command is kept since λ > λopt

and λ̇ < 0. Case (c) is similar to (b), moreover it allows
to re-establish an acceleration lower than ω̇N . By this
way a sub-cycle (1)-(2)-(6)-(1) can arise to make λ
closer to λopt.
The second operation is not necessary if the force-slip
curve remains constant. It is helpful in case of abrupt
changes of the road conditions.

(3) Control command: DECREASE
Events:

- if ω̇ ≥ ω̇p then next state = (4).
Description:
The DECREASE control action is established as soon
as the operating point is found to be in the unstable
region or when the wheel is locked. By decreasing the
brake pressure, the term Re Fx(λ) becomes dominant
in equation (2) and the wheel acceleration becomes
positive.

(4) Control command: HOLD (Initialization: k0 := k)
Events:

- if ω = 0 then next state = (3).
- if (k − k0)T ≥ Td then next state = (5).

Description:
Similar to state (1): actuators delay compensation.



(5) Control command: HOLD (Initialization: k0 := k)
Events:

- if ω = 0 then next state = (3).
- if ω̇ ≤ ω̇n then next state = (2).
- if (k − k0) ≥ nh and ∆ω̇(k) ≤ 0 then next state

= (6). Case (e) of Fig 5.
Description:
Similar to state (2). Actuators delay was compensated
while in state (4) or (1), therefore the HOLD phase
is established and the pressure P can be considered
constant. If (k − k0) ≥ nh the measure of ∆ω̇(k) can
be considered as reliable.
The two cases (d) and (e) of Fig 5 are possible. Case
(e) corresponds to property 4). In case (d) the HOLD
control command is kept since λ < λopt and λ̇ > 0.
The second operation is not necessary if the force-slip
curve remains constant. It is helpful in case of abrupt
changes of the road conditions.

(6) Control command: INCREASE
Events:

- if ω̇ ≤ ω̇n then next state = (1).
Description:
The INCREASE control action is established as soon
as the operating point is found to be in the stable
region. By increasing the brake pressure, the term
Kbrk P becomes dominant in equation (2) and the
wheel acceleration becomes negative.

V. SIMULATION RESULTS

This section describes the results of two different sim-
ulations obtained by changing the valve dynamics and the
road conditions. The vehicle and the hydraulic framework
are the same for all the simulations. The sampling period is
T = 1ms. To verify the self-tuning properties, braking on
varying road conditions (i.e. dry-wet-dry) have been consid-
ered. Fig. 6 shows the two force-slip curves that represent
the tire behaviour in the two different road conditions. The
transition between the two conditions depends on the traveled
distance x. The dynamics of the valves plays an important
role for the system performances. Some data about the valves
settling time were found in [17]. The system of simulation
1 has average valves (Td ≤ 20ms) and sensors (nh = 10),
gradual adhesion variations dry-wet-dry. For the simulation
2 the system has slow valves (Td up to 50ms), noisy sensors
(nh =20), abrupt adhesion variation dry-wet-dry.
Simulation 1 results. There are oscillations of the wheel
speed and slip due to the valve dynamics, however both
the optimal slip and wheel speed are well tracked by the
proposed control strategy, as shown in Fig. 7 and in Fig. 8.
The braking force is around its maximum, as shown in
Fig. 6 and Fig. 9. The performances decay only at low
speed (less than 8km/h, last 50cm) when the wheel locks-
up. As well known, the controllers based on acceleration
thresholds induce oscillations on the braking pressure as
shown in Fig. 10.
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Simulation 2 results. The amplitude of the wheel speed and
slip oscillations increases with the valves slowness. However
these oscillations are still around the optimal slip, as shown
in Fig. 11 and in Fig. 12. Consequently the braking force is
still around its maximum, as shown in Fig. 13.

VI. CONCLUSIONS

A self-tuning control strategy for antilock braking systems
has been proposed. The paper has shown that it is possible
to track the optimal slip value by measuring only the wheel
speed and estimating the wheel acceleration. The proposed
control strategy is robust with respect to adhesion variations,
takes into account the dynamics of the actuators and is al-
most hardware independent. The effectiveness of the control
strategy has been tested by simulation experiments.
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