
Network Emulation
Corso di Tecnologie di Infrastrutture di Reti

Martin Klapez

Department of Engineering Enzo Ferrari
University of Modena and Reggio Emilia

Modena, 23 May 2019

Martin Klapez (UNIMORE) Network Emulation 23 May 2019 1 / 31



Overview

? Network Simulation vs Network Emulation vs The Real Thing

? Introduction to Mininet

? Experience Bufferbloat with Mininet

? Create an Emulated network with Mininet

Martin Klapez (UNIMORE) Network Emulation 23 May 2019 2 / 31



Networks: Simulation vs Emulation vs The Real Thing
A graphical representation

Simulation Emulation ‘Real’

Martin Klapez (UNIMORE) Network Emulation 23 May 2019 3 / 31



Networks: Simulation vs Emulation vs The Real Thing
A graphical representation

Simulation Emulation ‘Real’

Martin Klapez (UNIMORE) Network Emulation 23 May 2019 4 / 31



Networks: Simulation vs Emulation vs The Real Thing
A comparison

Simulation Emulation Real
Code y x x

Accuracy If you’re lucky Reasonably accurate ·
Cost ee e eeeee

Martin Klapez (UNIMORE) Network Emulation 23 May 2019 5 / 31



Introduction to Mininet
Network Emulator Architecture: Full System Virtualization

OK, but VMs are heavyweight: the memory overhead for each VM limits
the scale to just a handful of switches and hosts.

Martin Klapez (UNIMORE) Network Emulation 23 May 2019 6 / 31



Introduction to Mininet
Network Emulator Architecture: Lightweight Virtualization (Mininet)

Mininet leverages Linux features (processes and virtual Ethernet pairs in
network namespaces).

Martin Klapez (UNIMORE) Network Emulation 23 May 2019 7 / 31



Introduction to Mininet
Network Emulator Architecture: Namespaces (Mininet)

Mininet creates a virtual network by placing host processes in network
namespaces and connecting them with virtual Ethernet (veth) pairs. In this

example, they connect to a user-space OpenFlow switch.

Martin Klapez (UNIMORE) Network Emulation 23 May 2019 8 / 31



Introduction to Mininet
Mininet: the Main Components

Hosts. Network namespaces are containers for network state. They
provide processes (and groups of processes) with exclusive ownership
of interfaces, ports, and routing tables (such as ARP and IP).

Links. A virtual Ethernet pair, or veth pair, acts like a wire connecting
two virtual interfaces; packets sent through one interface are delivered
to the other, and each interface appears as a fully functional Ethernet
port to all system and application software.

Switches. The same packet delivery semantics that would be
provided by a hardware switch.

Controllers. An SDN controller could run inside a VM, natively on a
host machine, or in the cloud.

Martin Klapez (UNIMORE) Network Emulation 23 May 2019 9 / 31



Introduction to Mininet
Interaction with the network

Run commands on hosts.

Verify switch operations.

Induce failures.

Adjust link connectivity.

Change the state of the network.

Modify OpenFlow tables.

...

Martin Klapez (UNIMORE) Network Emulation 23 May 2019 10 / 31



Introduction to Mininet
Limitations

Lack of performance fidelity, especially at high loads.

CPU resources are multiplexed in real-time by the default Linux scheduler,
which provides no guarantee that a host that is ready to send a packet will
be scheduled promptly, or that all switches will forward at the same rate.

In addition, software forwarding may not match hardware. O(n) linear
lookup for software tables cannot approach the O(1) lookup of a
hardware-accelerated TCAM in a vendor switch, causing the packet
forwarding rate to drop for large wildcard table sizes.

Martin Klapez (UNIMORE) Network Emulation 23 May 2019 11 / 31



Introduction to Mininet
Sources

Bob Lantz, Brandon Heller, Nick McKeown, “A Network in a Laptop:
Rapid Prototyping for Software-Defined Networks”, ACM, Hotnets ’10,
October 20-21, 2010, Monterey, CA, USA.
Te-Yuan Huang, Vimalkumar Jeyakumar Bob Lantz, Brian O’Connor,
Nick Feamster, Keith Winstein, Anirudh Sivar, “Teaching Computer
Networking with Mininet”, ACM, SIGCOMM 2014 Tutorial, August
18, 2014, Chicago, IL, USA.

Martin Klapez (UNIMORE) Network Emulation 23 May 2019 12 / 31



Experience Bufferbloat with Mininet
Prepare the ground

Turn on the provided virtual machine (Mininet-VM).
user: mininet
pass: mininet

Ensure you have Internet access from the VM:

> ping 8.8.8.8

If you already have the folder below, delete it:

> sudo rm -r cs144_bufferbloat/

Configure your keyboard layout:

> sudo dpkg-reconfigure keyboard-configuration

Martin Klapez (UNIMORE) Network Emulation 23 May 2019 13 / 31



Experience Bufferbloat with Mininet
Introduction to the problem

Big buffers: or ?

Big buffers deployed in the Internet may counterintuitively cause higher
latencies, higher jitter, and lower throughput.

You lose less packets, but some of them may fall behind others for a very
long time before being dispatched.

Martin Klapez (UNIMORE) Network Emulation 23 May 2019 14 / 31



Experience Bufferbloat with Mininet
Get the topology

Get and run the Mininet network that emulates the topology:

> git clone https://bitbucket.org/huangty/cs144_bufferbloat.git
> cd cs144_bufferbloat/
> sudo ./run.sh

Martin Klapez (UNIMORE) Network Emulation 23 May 2019 15 / 31



Experience Bufferbloat with Mininet
Commands

Measure the delay between the two hosts:

mininet > h1 ping -c10 h2

Measure how long it takes to download a web page from h1:

mininet > h2 wget http://10.0.0.1

Simulate a video streaming flow:

mininet > h1 ./iperf.sh

Martin Klapez (UNIMORE) Network Emulation 23 May 2019 16 / 31



Experience Bufferbloat with Mininet
Video flow and Short flow: router buffer of 100 packets

1 Start a simulation of a video streaming flow using the provided iPerf
script

2 While iPerf is running, see how the long-lived iPerf flow affects the
web page download

3 Observe how the delay between the hosts evolve over time

Why it happens what it happens?

cwnd
buffers

Martin Klapez (UNIMORE) Network Emulation 23 May 2019 17 / 31



Experience Bufferbloat with Mininet
Video flow and Short flow: router buffer of 100 packets

1 Start a simulation of a video streaming flow using the provided iPerf
script

2 While iPerf is running, see how the long-lived iPerf flow affects the
web page download

3 Observe how the delay between the hosts evolve over time

Why it happens what it happens?

cwnd
buffers

Martin Klapez (UNIMORE) Network Emulation 23 May 2019 17 / 31



Experience Bufferbloat with Mininet
Video flow and Short flow: router buffer of 100 packets

1 Start a simulation of a video streaming flow using the provided iPerf
script

2 While iPerf is running, see how the long-lived iPerf flow affects the
web page download

3 Observe how the delay between the hosts evolve over time

Why it happens what it happens?

cwnd
buffers

Martin Klapez (UNIMORE) Network Emulation 23 May 2019 17 / 31



Experience Bufferbloat with Mininet
Video flow and Short flow: router buffer of 20 packets

Restart Mininet with the smaller buffer:

mininet > exit
> sudo ./run-minq.sh

1 Start a simulation of a video streaming flow using the provided iPerf
script

2 While iPerf is running, see how the long-lived iPerf flow affects the
web page download

3 Observe how the delay between the hosts evolve over time

Worse? Better? Why?

Martin Klapez (UNIMORE) Network Emulation 23 May 2019 18 / 31



Experience Bufferbloat with Mininet
Video flow and Short flow: different queues

The problem seems to be that packets from the short flow are stuck behind
a lot of packets from the long flow.

What if we maintain a separate queue for each flow and then put iPerf and
wget traffic into different queues?

In the experiment, the scheduler implements fair queueing so that when
both queues are busy, each flow receives half of the bottleneck link rate.

Martin Klapez (UNIMORE) Network Emulation 23 May 2019 19 / 31



Experience Bufferbloat with Mininet
Video flow and Short flow: different queues

Restart Mininet with the two queues on the Headend router:

mininet > exit
> sudo ./run-diff.sh

1 Start a simulation of a video streaming flow using the provided iPerf
script

2 While iPerf is running, see how the long-lived iPerf flow affects the
web page download

3 Observe how the delay between the hosts evolve over time

Worse? Better? Why?

Martin Klapez (UNIMORE) Network Emulation 23 May 2019 20 / 31



Experience Bufferbloat with Mininet
Sources

Stanford CS144, “An Introduction to Computer Networks, Bufferbloat
Exercise”, https://github.com/mininet/mininet/wiki/Bufferbloat.

Martin Klapez (UNIMORE) Network Emulation 23 May 2019 21 / 31



Create Emulated Networks with Mininet
Assignment 1: Let’s draw!

Your assignment is to draw the network topologies that Mininet provides as
templates, exploring the networks by starting from a single command:

mininet > help

Good work!

1 > sudo mn --topo single
2 > sudo mn --topo linear
3 > sudo mn --topo linear,3
4 > sudo mn --topo tree
5 > sudo mn --topo tree,2
6 > sudo mn --topo tree,depth=2,fanout=3

Martin Klapez (UNIMORE) Network Emulation 23 May 2019 22 / 31



Create Emulated Networks with Mininet
Assignment 2: A custom topology

Your next assignment follows the inverse logic.

You should create with Mininet the custom topology that follows, getting
inspiration from the example Mininet scripts, which you can find at:

https://github.com/mininet/mininet/tree/master/examples
In the provided virtual machine in the directory
~/mininet/mininet/examples

Martin Klapez (UNIMORE) Network Emulation 23 May 2019 23 / 31



Create Emulated Networks with Mininet
Assignment 2: A custom topology

Good work!

Martin Klapez (UNIMORE) Network Emulation 23 May 2019 24 / 31



Become familiar with basic OpenFlow concepts
Assignment 3: A custom SDN controller

In this assignment, you will modify an existing SDN controller.

— It is assumed that you already have an understanding of SDN —

Martin Klapez (UNIMORE) Network Emulation 23 May 2019 25 / 31



Become familiar with basic OpenFlow concepts
Assignment 3: A custom SDN controller

SDN in a nutshell:

One time, network hardware did both the decision-making and the
actual work.
It was not programmable or, if it was, you had to get your hands dirty
by tinkering with vendor-specific APIs, directly on the hardware itself.
So, a switch had to calculate where to forward incoming packets, and
then had to actually send them. Direction & Execution.

Martin Klapez (UNIMORE) Network Emulation 23 May 2019 26 / 31



Become familiar with basic OpenFlow concepts
Assignment 3: A custom SDN controller

SDN in a nutshell:

Someone got tired by this lack of flexibility and saw the potential of
making this differently.
Abstractions are vastly applied in software. Why networking lacks
them?
The idea got executed through SDN (and NFV).
SDN: “Now” (not really, the majority of the deployed network
hardware still operates in the old way), decision-making is performed
by software, wrote with modern programming languages, that run on
general-purpose hardware (Control Plane), and execution is carried on
by “dumb” but fast specialized hardware that just follow the rules sent
to them (Data Plane).

Martin Klapez (UNIMORE) Network Emulation 23 May 2019 27 / 31



Become familiar with basic OpenFlow concepts
Assignment 3: A custom SDN controller

L2 Hub.

A L2 Hub has the job of forwarding a packet to the destination.

It works this way:
It receives a packet from a port x .
It floods the packet on all the other ports.

Inefficient but simple.

Martin Klapez (UNIMORE) Network Emulation 23 May 2019 28 / 31



Become familiar with basic OpenFlow concepts
Assignment 3: A custom SDN controller

L2 Learning Switch.

Same job, but it works this way:
It has a table to keep track of [mac& : port] associations.
It receives a packet from a port x .
It puts in the table [mac& : port].
It looks in the headers of the packet for the destination mac&.
If it finds the destination mac& in the table, it forwards the packet to
the corresponding port.
Otherwise, it floods the packet as a hub, but as soon receives a packet
from the destination mac& (a TCP ACK for instance), it tracks its
port in the table.

Martin Klapez (UNIMORE) Network Emulation 23 May 2019 29 / 31



Become familiar with basic OpenFlow concepts
Assignment 3: A custom SDN controller

Clone the POX repo.

> git clone https://github.com/noxrepo/pox.git

Start the default POX L2 Learning Switch.

> cd pox
> ./pox.py –unthreaded-sh forwarding.l2_learning &

Start Mininet with a basic topology (2 nodes, 1 switch) and connect the
POX controller.

> sudo mn –controller remote

Martin Klapez (UNIMORE) Network Emulation 23 May 2019 30 / 31



Become familiar with basic OpenFlow concepts
Assignment 3: A custom SDN controller

Your job is now to modify the default POX L2 Learning Switch.
Instead of installing rules on the switch, the controller has to check every
packet that passes through and has to explicitly tell the switch to send it to
the right port, every time.

Relevant documentation:

https://noxrepo.github.io/pox-doc/html/#openflow-messages

Useful commands:

mininet > h1 ping h2

> sudo pkill python (to shutdown the active POX controller)

Martin Klapez (UNIMORE) Network Emulation 23 May 2019 31 / 31


