Cooperative Architectures and Algorithms for Discovery and Transcoding of Multiversion Content

> Claudia Canali University of Parma

Michele Colajanni University of Modena and Reggio Emilia Valeria Cardellini

University of Rome "Tor Vergata"

Riccardo Lancellotti University of Rome "Tor Vergata"

Philip S. Yu IBM T. J. Watson Research Center

Heterogeneous environment

- Clients have different capabilities:
 - Display
 - CPU power
 - Network

Heterogeneous environment

- Clients have different capabilities:
 - Display
 - CPU power
 - Network

Transcoding (content adaptation)

Content adaptation: where?

- Server
- Client
- Intermediate-based content adaptation
 - Firewall, proxy, gateway already exists
- *Problem:* transcoding computationally expensive
- Typical solutions:
 - Caching \rightarrow less transcoding required
 - Replication \rightarrow load sharing

Distributed content adaptation

- Caching issue:
 - Multiple versions \rightarrow working set size increased
- Replication issue:
 - Transcoding computationally expensive
 → need effective load sharing
- <u>Contribution</u>:
 - Analysis of cooperation schemes applied to content adaptation architecture

Topologies and schemes

- Non cooperative (No coop)
- Hierarchical root (Hierarchical root)
- Hierarchical leaf (Hierarchical leaf)
- Flat query-based (Flat-query)
- Flat summary-based (Flat-summary)

Hierarchical architectures

Workload models

- Two working sets
 - Light trans-load (resources from IRCache logs)
 - Heavy trans-load (multimedia working set)
- Syntetically generated traces

Architecture comparison (light trans-load)

Architecture comparison (heavy trans-load)

Summary of experiments

Response time

	Light trans-load [sec]		Heavy trans-load [sec]	
Cooperation scheme	Median	90-percentile	Median	90-percentile
Flat quey-based	0,11	0,64	0,62	2,24
Flat summary-basd	0,07	0,78	0,56	3,76
Hierarchical root	0,86	2,82	5,52	14,57
Hierarchical leaf	0,3	1,74	1,07	5,11

- Hierarchical root \rightarrow congestion on the root node
- Flat architectures better than hierarchical
- Performance gain can be improved
- Issues related to load partially addressed
 - First solution: Load sharing algorithms

Load sharing algorithms

- Flat query-based architecture
- Choices in case of useful hit
- Load-aware algorithm
 - Local load-aware
 - Threshold
- Load-blind algorithms
 - Blind-active
 - Blind-lazy

Load-aware algorithm

- Operate on useful hits
 - Local
 - Remote
- Threshold based algorithm
 - Load \geq Thr \rightarrow avoid transcoding
 - Load < Thr → accept transcoding

Load-aware algorithm

- Operate on useful hits
 - Local
 - Remote
- Threshold based algorithm
 - Load \geq Thr \rightarrow avoid transcoding
 - Load < Thr → accept transcoding

Load-aware algorithm

- Operate on useful hits
 - Local
 - Remote
- Threshold based algorithm
 - Load \geq Thr \rightarrow avoid transcoding
 - Load < Thr → accept transcoding

Load-blind algorithms

- Extreme threshold value \rightarrow load blind
 - Thr=0.0 \rightarrow Blind-lazy never content adaptation
 - Thr>1.0 \rightarrow Blind-active always content adaptation

Workload

- Heavy trans-load working set
- Two request distribution
 - Bimodal 10%-90%
 - Uniform

Experimental results (bimodal workload)

Experimental results (uniform workload)

Summary of experiments

- Blind-lazy
 - Best median response time, worst 90-percentile
- Blind-active
 - Best with uniform workload
- Load-aware
 - Best with heavily skewed workload
- Limited performace gain
- Load awareness do not address working set growth issues

Two-level architecture (future work)

- Issues related to load partially addressed
 - First solution: Load sharing algorithms
 - Second solution: Two-level architecture (new architecture)
- Hash-based routing

Two-level architecture (future work)

- Address both issues
 - Increased working set size
 - Avoid duplicates \rightarrow efficient cache usage
 - Transcoding computational load
 - Hash function \rightarrow load sharing
 - Higher cache hit rate \rightarrow reduced load
- Preliminary results (90-percentile resp. time):
 - 2x Flat query-based
 - 5x No cooperation

Cooperative Architectures and Algorithms for Discovery and Transcoding of Multi-version Content

For more information: http://weblab.ing.unimo.it/research/trans_caching.shtml