
Cooperative Architectures and Algorithms
for Discovery and Transcoding of Multi-

version Content

Valeria Cardellini
University of Rome

''Tor Vergata''

Riccardo Lancellotti
University of Rome

''Tor Vergata''

Claudia Canali
University of Parma

Michele Colajanni
University of Modena and Reggio Emilia

Philip S. Yu
IBM T. J. Watson Research Center

Heterogeneous environment
● Clients have different capabilities:

● Display
● CPU power
● Network

Heterogeneous environment
● Clients have different capabilities:

● Display
● CPU power
● Network

Transcoding
(content adaptation)

Content adaptation: where?
● Server
● Client
● Intermediate-based content adaptation

● Firewall, proxy, gateway already exists
● Problem: transcoding computationally

expensive
● Typical solutions:

● Caching  less transcoding required
● Replication  load sharing

Distributed content adaptation
● Caching issue:

● Multiple versions  working set size increased
● Replication issue:

● Transcoding computationally expensive
 need effective load sharing

● Contribution:
● Analysis of cooperation schemes applied to

content adaptation architecture

Topologies and schemes
● Non cooperative (No coop)
● Hierarchical root (Hierarchical root)
● Hierarchical leaf (Hierarchical leaf)
● Flat query-based (Flat-query)
● Flat summary-based (Flat-summary)

Hierarchical architectures
Hierarchical

root
Hierarchical

leaf

Clients Clients

Content serverContent server

Flat architectures

Clients Clients

Flat query-based Flat summary-based
Content
server Content

server

Workload models
● Two working sets

● Light trans-load (resources from IRCache logs)
● Heavy trans-load (multimedia working set)

● Syntetically generated traces

Architecture comparison
(light trans-load)

Architecture comparison
(heavy trans-load)

Summary of experiments

● Hierarchical root  congestion on the root node
● Flat architectures better than hierarchical
● Performance gain can be improved
● Issues related to load partially addressed

● First solution: Load sharing algorithms

Light trans-load [sec] Heavy trans-load [sec]
Cooperation scheme Median 90-percentile Median 90-percentile
Flat quey-based 0,11 0,64 0,62 2,24
Flat summary-basd 0,07 0,78 0,56 3,76
Hierarchical root 0,86 2,82 5,52 14,57
Hierarchical leaf 0,3 1,74 1,07 5,11

Response time

Load sharing algorithms
● Flat query-based architecture
● Choices in case of useful hit
● Load-aware algorithm

● Local load-aware
● Threshold

● Load-blind algorithms
● Blind-active
● Blind-lazy

Load-aware algorithm

Clients

● Operate on useful hits
● Local
● Remote

● Threshold based
algorithm

● Load  Thr 
avoid transcoding

● Load  Thr 
accept transcoding

Load-aware algorithm

Clients

● Operate on useful hits
● Local
● Remote

● Threshold based
algorithm

● Load  Thr 
avoid transcoding

● Load  Thr 
accept transcoding

Load-aware algorithm

Clients

● Operate on useful hits
● Local
● Remote

● Threshold based
algorithm

● Load  Thr 
avoid transcoding

● Load  Thr 
accept transcoding

Load-blind algorithms
● Extreme threshold value load blind

● Thr=0.0  Blind-lazy never content adaptation

● Thr>1.0  Blind-active always content adaptation

Workload
● Heavy trans-load working set
● Two request distribution

● Bimodal 10%-90%
● Uniform

Experimental results
(bimodal workload)

Experimental results
(uniform workload)

Summary of experiments
● Blind-lazy

● Best median response time, worst 90-percentile
● Blind-active

● Best with uniform workload
● Load-aware

● Best with heavily skewed workload
● Limited performace gain
● Load awareness do not address working set

growth issues

Two-level architecture (future work)
● Issues related to load partially addressed

● First solution: Load sharing algorithms
● Second solution: Two-level architecture (new architecture)

● Hash-based routing

Content
server

Clients Edge
servers

Inner
servers

Two-level architecture (future work)

● Address both issues
● Increased working set size

● Avoid duplicates  efficient cache usage
● Transcoding computational load

● Hash function  load sharing
● Higher cache hit rate  reduced load

● Preliminary results (90-percentile resp. time):
● 2x Flat query-based
● 5x No cooperation

Cooperative Architectures and
Algorithms for Discovery and

Transcoding of Multi-version Content

For more information:
http://weblab.ing.unimo.it/research/trans_caching.shtml

http://weblab.ing.unimo.it/research/trans_caching.shtml

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24

