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Heterogeneous environment
● Clients have different capabilities:

● Display
● CPU power
● Network 
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Transcoding
(content adaptation)



Content adaptation: where?
● Server
● Client
● Intermediate-based content adaptation

● Firewall, proxy, gateway already exists
● Problem: transcoding computationally 

expensive
● Typical solutions:

● Caching  less transcoding required
● Replication  load sharing



Distributed content adaptation
● Caching issue:

● Multiple versions  working set size increased
● Replication issue:

● Transcoding computationally expensive 
 need effective load sharing

● Contribution:
● Analysis of cooperation schemes applied to 

content adaptation architecture



Topologies and schemes
● Non cooperative (No coop)
● Hierarchical root (Hierarchical root)
● Hierarchical leaf (Hierarchical leaf)
● Flat query-based (Flat-query)
● Flat summary-based (Flat-summary)
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Flat architectures
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Workload models
● Two working sets

● Light trans-load (resources from IRCache logs)
● Heavy trans-load (multimedia working set)

● Syntetically generated traces



Architecture comparison 
(light trans-load)



Architecture comparison 
(heavy trans-load)



Summary of experiments

● Hierarchical root  congestion on the root node
● Flat architectures better than hierarchical
● Performance gain can be improved
● Issues related to load partially addressed

● First solution: Load sharing algorithms

Light trans-load [sec] Heavy trans-load [sec]
Cooperation scheme Median 90-percentile Median 90-percentile
Flat quey-based 0,11 0,64 0,62 2,24
Flat summary-basd 0,07 0,78 0,56 3,76
Hierarchical root 0,86 2,82 5,52 14,57
Hierarchical leaf 0,3 1,74 1,07 5,11

Response time



Load sharing algorithms
● Flat query-based architecture
● Choices in case of useful hit
● Load-aware algorithm

● Local load-aware
● Threshold

● Load-blind algorithms
● Blind-active
● Blind-lazy



Load-aware algorithm

Clients

● Operate on useful hits
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● Threshold based 
algorithm
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accept transcoding
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Load-blind algorithms
● Extreme threshold value load blind

● Thr=0.0  Blind-lazy  never content adaptation
 

● Thr>1.0  Blind-active always content adaptation 



Workload
● Heavy trans-load working set
● Two request distribution

● Bimodal 10%-90%
● Uniform



Experimental results
(bimodal workload)



Experimental results
(uniform workload)



Summary of experiments
● Blind-lazy

● Best median response time, worst 90-percentile
● Blind-active

● Best with uniform workload
● Load-aware

● Best with heavily skewed workload
● Limited performace gain
● Load awareness do not address working set 

growth issues



Two-level architecture (future work)
● Issues related to load partially addressed

● First solution: Load sharing algorithms
● Second solution: Two-level architecture (new architecture)

● Hash-based routing

Content
server

Clients Edge
servers

Inner
servers



Two-level architecture (future work)

● Address both issues
● Increased working set size

● Avoid duplicates  efficient cache usage
● Transcoding computational load

● Hash function  load sharing
● Higher cache hit rate  reduced load

● Preliminary results (90-percentile resp. time):
● 2x Flat query-based
● 5x No cooperation



Cooperative Architectures and 
Algorithms for Discovery and 

Transcoding of Multi-version Content

For more information:
http://weblab.ing.unimo.it/research/trans_caching.shtml

http://weblab.ing.unimo.it/research/trans_caching.shtml
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