An Adaptive Technique to Model Virtual Machine Behavior for Scalable Cloud Monitoring

C. Canali
R. Lancellotti

University of Modena and Reggio Emilia
Department of Engineering “Enzo Ferrari”
Challenge: monitoring

- Large data centers (> 10^5 VMs) → huge amount of data
- Point of view: IaaS provider → monitoring supporting infrastructure management
- VM can be anything → treat VM as black boxes
- → Scalability issues
Challenge: monitoring

- **Current approach: reduce amount of data in a uniform way**
 - Reduce sampling frequency
 - Reduce number of metrics considered
- **→ Reduced monitoring effectiveness**
 - Less information available for management
- **Solution: Exploit VM similarity**
Improving monitoring scalability

- Group similar VMs together
- Detailed monitoring of cluster representatives
- Reduced monitoring of other VMs

\[\rightarrow \text{Data collection reduced by one order of magnitude} \]
Challenge: fast identification

- VM behavior model built starting with time series of resource usage on VMs
- Long time series to characterize VM behavior
 - → Highly accurate clustering
- Clustering accuracy decreased by shorter time series
 - → problems coping with Cloud dynamic behavior
- Need to combine fast and accurate identification of VM behavior
Reference scenario

- **IaaS, medium-long term commitment**
 - Amazon Reserved instances, private cloud

- **Reactive VM relocation**
 - Local manager

- **Periodic global consolidation**
 - Global optimization
Our proposal: adaptive approach

• Observation:
 – Some VMs are easily identified as belonging to a cluster even after short observation
 – Other VMs require more detail to build a reliable behavior model

• Proposal:
 – Cluster as fast as possible VMs clearly belonging to a cluster
 – Postpone clustering of VMs when not sure

• Adoption of fuzzy logic perspective
 – Introduce decree of belonging of VM to clusters to rete reliability of clustering result
 – Gray area of uncertain clustering
Adaptive algorithm

- Adaptive identification of time series length
 - When clustering is not ambiguous (white area)
 - VM behavior model is OK
 - No update required
 - When clustering is ambiguous (gray area)
 - Need to improve VM behavior model
 - Further observation required
Definition of Gray Area

• Feature space: k-dimensional space
 – Each VM described by a feature vector (point in feature space)
 – Each cluster has a centroid described as a point in the feature space

• For each VM n:
 – Vector of distances from the cluster centroids
 \[D_n = \{d_{1n}^n, d_{2n}^n, \ldots, d_{Cn}^n\} \]

• Definition of gray area
 – A VM is in gray area if there exists a couple of clusters i, j such that
 \[1 - \varepsilon < \frac{d_{in}^n}{d_{jn}^n} < \frac{1}{1 - \varepsilon}, 0 < \varepsilon < 1 \]
Definition of Gray Area

- Higher epsilon \rightarrow wider gray area
- Problem: definition of right value of epsilon
 - Open problem, still working on that...
 - Experimental results suggest $\varepsilon = 0.33$ as a rule of thumb
Case study

- **Datacenter supporting a e-health Web application**
 - Web server and DBMS
 - 110 VMs
 - 11 metrics for each VM,
 - Sampling frequency: 5 min
- **Goal: separate Web servers and DBMS**
 - Clustering accuracy
 - % of VM in gray area
- **2 VM behavior model approaches**
 - PCA-based
 - Bhattacharyya distance-based
Experimental results

Time series length: 1 day, PCA-based clustering
Experimental results

- Validating the choice of epsilon
 - For $\varepsilon \geq 0.33$ the accuracy is 100% (absence of mis-classified VMs)
 - The size of the gray area depends on the clustering algorithms

![Graphs showing clustering accuracy and percentage of gray area vs. epsilon for PCA-based and Bhattacharyya distance-based methods.](image-url)
Experimental results
Conclusion

- **Experimental results are encouraging**
 - Can achieve high clustering purity
 - Can provide accurate clustering even with very short time series
 - Works with different clustering algorithms
 - Adaptive approach to select the time series length

- **This is not a crystal ball**
 - But may be a useful tool to improve monitoring and management of cloud data centers
On-going works

- Adaptive selection of the ε parameter
- Evaluation with time-series < 24 h
- Comparison with other fuzzy clustering algorithms
- Additional experiments with different workloads (*help appreciated*)
An Adaptive Technique to Model Virtual Machine Behavior for Scalable Cloud Monitoring

C. Canali
R. Lancellotti

University of Modena and Reggio Emilia
Department of Engineering “Enzo Ferrari”