Hot set identification for Social network applications

Michele Colajanni
Claudia Canali
Riccardo Lancellotti

University of Modena and Reggio Emilia
Future Web Scenarios

• Community-based services
 – Social networking: support for user interaction be the killer of future Web
 – Rich-media content
 – Presence of Mobile User access

• Workload evolution in the next five years
 – Computational demand will grow faster than CPU power (Moore's Law)
Expected growth of computational demands
Motivations for content management

- Content management
 - Content replication
 - Caching
 - CDN delivery
 - Resource pre-generation

→ Need to identify the Hot set of popular resources
 - Variability in workload characteristics
 - Rapid variations in access patterns
 - Workload dynamics related to social interactions

→ Need for algorithms providing early and fast detection of popular resources.

→ Stable performance are not an optional
Proposal: Algorithms for Hot set identification

• **The algorithm must identify the set HS(t)**
 - Hot set is evaluated periodically with interval Δt
 - $HS(t)$ will receive the highest number of accesses in the interval $[t, t+\Delta t]$
 - $HS(t)$ subset of $R(t)$, working set at time t

• **An algorithm must:**
 - Estimate $p_r(t)$, where $p_r(t)$ is the popularity of resource r in interval $[t, t+\Delta t]$
 - Sort $R(t)$ according to $p_r(t)$

• \rightarrow **$HS(t)$ is the top fraction of sorted set $R(t)$**
Proposed algorithms

- Critical task for every algorithm
 - Evaluation of $p_r(t)$

- Three classes of innovative algorithms
 - Predictive
 - Social-aware
 - Predictive-Social

- Comparison with existing solutions
Existing algorithms

- **Focus on the time interval** $[t-\Delta t, t]$
 - $d_r(t)$ is the number of access to resource r in interval $[t-\Delta t, t]$

- **Access frequency as a measure of resource popularity**
 - $p_r(t) = \frac{d_r(t)}{\Delta t}$

- **Similar to frequency-based algorithms already used for cache replacement**
Predictive algorithms

- History of past accesses to resource \(r \) represented as a time series:
 - \(D_r(t) = \{d_r(t), d_r(t-\Delta t), \ldots, d_r(t-(n-1)\Delta t)\} \)
 - \(d_r(t) \) is number of accesses to resource \(r \) in interval \([t-\Delta t, t] \), \(d_r(t-\Delta t) \) refer to \([t-2\Delta t, t-\Delta t] \), ...

- Use of an EWMA model for prediction:
 - \(d_r^*(t,t+\Delta t) = \gamma d_r^*(t,t+\Delta t) + (1-\gamma)d_r(t) \)
 - \(\gamma = 2/n \), where \(n \) is the time series length

- Other prediction models are possible
Social-aware algorithms

- Social network can be represented as a directed graph
 - Reverse contact represent the popularity of a user within the social network
 - User navigation exploits social links
 - Strong correlation between user popularity and popularity of uploaded resources
 - Popular users are likely to publish popular content
Social-aware algorithms

• Popularity estimation based on user reverse contacts
 – $c_r(t)$ connection degree of user that uploaded resource r
 – $c_{\text{max}}(t)$ maximum connection degree

• The model includes also the effect of resource aging
 – $a_r(t)$ age of resource r (time since resource upload)
 – $p_r(t) = \frac{c_r(t)}{(c_{\text{max}}(t) \ a_r(t))}$
Predictive-Social algorithms

• Most innovative class of algorithms
 – Merges information from two sources:
 – Prediction
 – Social information

• Need for a reliable way to merge two completely different sets of data
 – Different value ranges
 – Different probability distributions

• Use of a robust weighting function
 – Two-sided quartile weighted median
 – Given distribution $P(t)$:
 – $Q_{WM}(P(t)) = \frac{(Q_{25}(P(t)) + 2Q_{50}(P(t)) + Q_{75}(P(t)))}{4}$
Predictive-Social algorithms

- **Merging social-aware and predictive information**
 - $p_r P(t) \rightarrow$ predictive
 - $p_r S(t) \rightarrow$ social
 - $\delta(t) \rightarrow$ weight

- **That is:**
 - $p_r(t) = \delta(t) p_r P(t) + (1-\delta(t)) p_r S(t)$
 - $\delta(t) = \frac{QWM(PS(t))}{QWM(PS(t)) + QWM(PP(t))}$
Experimental setup

- **Simulation based on Omnet++ framework**
 - User population up to 20000 units
 - Average of 100 requests/sec
 - 12 hours of simulated time
 - $\Delta t=20$ minutes
 - Main metric: accuracy=$\frac{|HS(t) \cap HS^*(t)|}{|HS^*(t)|}$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hot fraction [%]</td>
<td>5%-30%</td>
<td>20%</td>
</tr>
<tr>
<td>Upload percentage [%]</td>
<td>1%-20%</td>
<td>5%</td>
</tr>
<tr>
<td>User/resource popularity correlation</td>
<td>0.6-0.8</td>
<td>0.7</td>
</tr>
</tbody>
</table>
Performance evaluation

- Existing algorithms can be improved

- Predictive and social-aware algorithms provide significant improvement

- Merging prediction and social information provides further benefits

- Results are similar for every considered hot set size

→ Need to evaluate performance stability
Sensitivity to workload dynamics

- Existing algorithms cannot cope with large amount of uploads.
- Prediction is highly sensitive to upload percentage.
- Social-aware algorithm is not sensitive to workload dynamics.
- Predictive-Social algorithm provides stable performance.
Sensitivity to social parameters

- Prediction is not affected by social phenomena
- Social-aware is highly sensitive to the correlation between user and resource popularity
- Predictive-Social algorithm provides stable performance
Conclusions

- **Content management will be fundamental for future social network applications**
 - Need to identify the Hot set
 - Must cope with novel challenges (social interaction, short resource lifespan, ...)

- **Need for high accuracy and stable performance**

- **Three classes of algorithms**
 - Predictive → sensitive to workload dynamics
 - Social-aware → sensitive to social dynamics
 - Predictive-Social → stable results

- **Future work**
 - Experiments with real social network traces
 (any help is appreciated)
Hot set identification for Social network applications

Michele Colajanni, Claudia Canali
Riccardo Lancellotti

riccardo.lancellotti@unimore.it

University of Modena and Reggio Emilia