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Abstract: The trend of an ever-increasing number of geographically distributed sensors producing data for a plethora of
applications, from environmental monitoring to smart cities and autonomous driving, is shifting the computing
paradigm from cloud to fog. The increase in the volume of produced data makes the processing and the
aggregation of information at a single remote data center unfeasible or too expensive, while latency-critical
applications cannot cope with the high network delays of a remote data center. Fog computing is a preferred
solution as latency-sensitive tasks can be moved closer to the sensors. Furthermore, the same fog nodes can
perform data aggregation and filtering to reduce the volume of data that is forwarded to the cloud data centers,
reducing the risk of network overload. In this paper, we focus on the problem of designing a fog infrastructure
considering both the location of how many fog nodes are required, which nodes should be considered (from a
list of potential candidates), and how to allocate data flows from sensors to fog nodes and from there to cloud
data centers. To this aim, we propose and evaluate a formal model based on a multi-objective optimization
problem. We thoroughly test our proposal for a wide range of parameters and exploiting a reference scenario
setup taken from a realistic smart city application. We compare the performance of our proposal with other
approaches to the problem available in literature, taking into account two objective functions. Our experiments
demonstrate that the proposed model is viable for the design of fog infrastructure and can outperform the
alternative models, with results that in several cases are close to an ideal solution.

1 Introduction

Fog computing is joining the traditional cloud
platforms as the enabling technology for a wide range
of applications [13, 16]. Applications that must cope
with a large amount of data produced by a wide set
of distributed sensors are a typical scenario where fog
computing is a winning asset. For example, Internet
of Things frameworks, smart city support, and envi-
ronmental monitoring can benefit from the distributed
nature of fog computing. Another class of applica-
tions that can take advantage from the fog computing
paradigm is that of delay-sensitive tasks, such as the
support of autonomous driving.

Figure 1 presents a comparison of fog and cloud
infrastructures. In the cloud case (the left part of the
figure) a set of sensors (at the bottom of the figure)
sends data directly to the cloud data center (at the top
of the figure) for processing. In the fog case (on the
right part of the figure), a layer of fog nodes is placed
close the network edge (and hence to the sensors) to

Figure 1: Cloud and fog infrastructures

host pre-processing, filtering, and aggregation tasks.
The advantage of fog computing over a tradi-

tional cloud computing approach in these scenarios
is twofold. First, in a cloud scenario the huge data
volume reaching the cloud data center increases the
risk of high network utilization and can determine
poor performance. Even in the case where the high



network load does not result in a performance degra-
dation, high network utilization is still undesirable
due to the non-negligible economic cost related to the
cloud pricing model. The distributed nature of fog
computing and the ability of fog nodes to reduce the
data volume through pre-processing are key features
to address this issue. Second, latency-sensitive ap-
plications cannot accept a delay that may be in the or-
der of hundreds of milliseconds, due to the potentially
high round-trip-time latency with the cloud data cen-
ter. The fog layer located close to the network edge
can guarantee low latency and fast response even for
this class of applications.

The additional degree of freedom provided by
the introduction of fog nodes opens also new prob-
lems for the infrastructure design. In particular, some
studies consider a naive approach in the allocation
(i.e., mapping) of data flows to fog nodes, assum-
ing that every sensor can reach only the nearest fog
node [7, 17]. Recent studies demonstrated that an op-
timized assignment of sensors to fog nodes can pro-
vide a major advantage in solving this problem [2, 3].
However, even when some optimization is performed
in the sensor-to-fog mapping, no effort is devoted in
understanding whether the whole fog infrastructure
is required or some fog node can be switched off to
reduce energy consumption. This problem has been
widely explored at the level of managing resources in
a cloud data center [1, 12], but it has been neglected
in the fog computing area.

In this paper, we explicitly address these issues in
the area of fog computing (unlike studies such as [4]
that focuses on generic distributed stream process-
ing systems). We introduce a performance model for
fog computing that considers both network delays and
processing time at the level of fog nodes. Further-
more, we propose an optimization model, based on
a facility location-allocation problem, aiming to lo-
cate fog nodes and allocate sensors to fog nodes. This
class of problems have been studied in the area of op-
erational research [5, 6, 8]. In particular, studies con-
cerning the application of such models in urban sce-
narios [9, 15] and with variable number of nodes [11]
have been proposed recently. However, our proposal
is characterized by the presence of two objective:
minimize the number of used fog nodes while guar-
anteeing the respect of a service level agreement on
response time; and minimize the response time for
the given number of selected fog nodes. Furthermore,
our model capture the nature of the underlying prob-
lem, that is characterized by non-linear functions in
the description of the response time. to the best of
our knowledge the proposal in this paper is the first
attempt to model this dual-objective problem in the

area of fog computing.
The experiments are based on a real, geo-

referenced scenario. We consider the design of a
smart-city infrastructure in Modena, Italy, and com-
pare the proposed model with a simplified model pro-
posed in [2, 3]. All these comparisons use a linear
ideal model as a lower bound for the performance.
The results demonstrate that the proposed model is
a viable alternative for the design of fog infrastruc-
ture and it can outperform the alternative in terms of
ensuring adequate performance while minimizing the
infrastructure cost. Furthermore, in most cases, the
performance of our solution are close to the ideal so-
lution, especially in the most critical cases when the
system load is high.

The remainder of the paper is organized as fol-
lows. Section 2 presents the theoretical modeling for
the considered problem. Section 3 presents the exper-
imental setup and the considered scenarios, and pro-
vides a thorough evaluation of the proposed model
against the alternatives. Finally, Section 4 presents
some concluding remarks and outlines some future
work direction.

2 Problem definition

In the proposed model, we assume a stationary
scenario where a set S of similar sensors are dis-
tributed over an area. Sensors produce data at a steady
rate, with a frequency that we denote as λi for the
generic sensor i. The fog layer is composed by a set
F of nodes that receive data from the sensors and per-
form operations on such data. Examples of these op-
erations include filtering and/or aggregation, or some
form of analysis to identify anomalies or problems as
fast as possible. The rate at which the fog node j
processes data is µj (hence 1/µj is the average pro-
cessing time for a data unit). We also consider that
each fog node j is characterized by a fixed cost cj if
the node is turned on (i.e., a fog is located at posi-
tion j). We consider a set of cloud data centers C that
collect data from the fog nodes. The model considers
also the presence of network delays from sensors to
fog nodes and from fog nodes to cloud data centers.
In particular, we define as δij the delay from sensor i
to fog node j, while δjk is the delay from fog node j
to cloud data center k.

For the model, we use three families of binary de-
cision variables. Two families are used to allocate
sensors to fog nodes and fog nodes to cloud data cen-
ter, that is, xij and yjk model if sensor i sends data to
fog node j and if fog node j sends data to cloud data
center k, respectively. The last family is Ej and it de-



fines if a fog node is located at position j, that is, if
such fog node is turned on and can be used to process
data from sensors.

We summarize the main symbols used throughout
the model in Table 1.

2.1 Sensor allocation problem

The problem of sensor mapping (i.e., allocation) re-
lies on the definition of the performance metrics that
are considered in the optimization problem. The sen-
sor mapping problem was introduced in [2, 3]. In this
subsection, we present a revised version of the model.
As a minimal metric for the model we focus on the
average response time, defined in Eq. (1), that is com-
posed of three components: the network delay due to
the sensor to fog latency in Eq. (2), the network de-
lay due to the fog to cloud latency in Eq. (3), and the
processing time on the fog nodes in Eq. (4).

TR = TnetSF + TnetFC + Tproc (1)

TnetSF =
1∑
i∈S λi

∑
i∈S

∑
j∈F

λixijδij (2)

TnetFC =
1∑

j∈F λj

∑
j∈F

∑
k∈C

λjyjkδjk (3)

Tproc =
1∑

j∈F λj

∑
j∈F

λj
1

µj − λj
(4)

It is worth mentioning that in two delay compo-
nents, TnetSF in (2) and TnetSF in (3), the average
delay of each sensor and fog node is weighted by the
amount of traffic experiencing that delay, which is λi
for TnetSF and λj in TnetFC . The incoming data rate
on each fog node λj can be defined as the sum of the
data rates of the sensors allocated to that node:

λj =
∑
i∈S

xijλi, ∀j ∈ F (5)

The processing time Tproc can be modeled using
the queuing theory. An estimation of this component
of the response time, consistent with other results in
literature [1, 2, 3] is used in Eq. (4).

The mathematical model for the sensor allocation
problem uses the definition of TR in (1) as the ob-
jective function. As we are not taking into account
the problem of locating fog nodes, in this part of the
problem definition, we do not consider the decision
variable Ej , so we use just xi,j and yj,k. Then, we

consider a set of constraints defined as follows:

λj < µj , ∀j ∈ F (6)∑
j∈F

xij = 1, ∀i ∈ S (7)

∑
k∈C

yjk = 1, ∀j ∈ F (8)

In particular, constraints (6) ensure that no over-
load occurs on each fog node, that is the incoming
data flow must not exceed the processing rate. Con-
straints (7) guarantee for each sensor that exactly one
fog node processes its data, while constraints (8) en-
sure for each fog node that exactly one cloud data cen-
ter receives its processed data.

2.2 Fog nodes location problem

We introduce an additional problem to the sensor al-
location problem, which is the location of a subset of
fog nodes. For that, we add an additional variable
Ej for each location j where a fog node is powered
on. For a node that is powered down, no process-
ing must occur. This means that constraints (6) must
be re-defined with an additional constraint, such that
when Ej is equal to zero, we have λj also equal to
zero, resulting in the new constrains:

λj < Ejµj ∀j ∈ F (9)

The optimization problem considers two criteria:

• Minimize the cost associated with the number of
fog nodes turned on. Recalling the cost cj associ-
ated to using a fog node in location j, this objec-
tive is:

C =
∑
j∈F

cjEj (10)

• Minimize the delay in sensor to fog to cloud tran-
sit of data. To this aim we can use the cost func-
tion introduced as TR in (1).

It follows that the overall model for the fog node



Table 1: Notation and parameters for the proposed model.

Model parameters

S Set of sensors
F Set of fog nodes
C Set of cloud data centers
λi Outgoing data rate from sensor i
λj Incoming data rate at fog node j
1/µj Processing time at fog node j
δij Communication latency between sensor i and fog j
δjk Communication latency between fog j and cloud k
cj Cost for locating a fog node at position j (or for keeping the fog node turned on)

Model indices

i Index for a sensor
j Index for a fog node
k Index for a cloud data center

Decision variables

Ej Location of fog node j
xij Allocation of sensor i to fog j
yjk Allocation of fog node j to cloud k

location-allocation problem is defined as:

Minimize:

C =
∑
j∈F

cjEj (11)

TR = TnetSF + TnetFC + Tproc (12)
Subject to:

TR ≤ TSLA (13)
λj < Ejµj , ∀j ∈ F (14)∑

j∈F
xij = 1, ∀i ∈ S, (15)

∑
k∈C

yjk = Ej , ∀j ∈ F (16)

Ej ∈ {0, 1}, ∀j ∈ F (17)
xij ∈ {0, 1}, ∀i ∈ S, j ∈ F (18)
yjk ∈ {0, 1}, ∀j ∈ F , k ∈ C (19)

The two objective functions (11) and (12) are re-
lated to the minimization of costs and latency in the
network. Constraints (14) represent the no-overload
condition. Constraints (15) and (16) are the revised
version of the constraints (7) and (8) introduced in
Section 2.1 where we now consider the variable Ej .
Constraints (17), (18) and (19) describe the domain of
the decision variables.

One important set of constraints to discuss in this
formulation is (13), which introduce a limit such that
the average response time does not exceed a Service

Level Agreement (SLA). The maximum response time
is typically defined as a multiple of the average re-
sponse time 1/µ [1]. Besides that, we introduce an
additional term due to the network delays in a dis-
tributed architecture (that we consider non-negligible)
related to the sensor to fog and fog to cloud network
delays. In particular, to this aim we consider this
network delay contribution depending on the average
network delays that we define as δ. We formalize the
value of the SLA limit in (20), where K is a constant
defined in accordance with the network requirements.

TSLA =
K

µ
+ 2δ (20)

3 Experimental results

The performance of the proposed model is as-
sessed through a realistic fog computing scenario,
where geographically distributed sensors send data to
fog nodes. Throughout this section, we start by de-
scribing the experimental setup used in the perfor-
mance evaluation and then we compare the perfor-
mance of the considered alternatives.

3.1 Experimental setup

The scenario is based on a smart city project for the
city of Modena in Italy, which has a population of



around 180.000 inhabitants aiming to correlate air
quality and car traffic as in [14]. The application con-
siders a set of 89 sensors located in the main streets of
the city. These sensors are wireless devices that col-
lect information related to car and pedestrian traffic
(that comprise reading from proximity sensors and,
possibly, low-resolution images) and send these data
to fog nodes. For the sake of the model, the location
of the sensors is obtained by geo-referencing the se-
lected streets. The fog nodes pre-process the received
data by filtering the proximity sensor readings and, if
available, analyze images from the camera to detect
cars and pedestrians. The pre-processed data are then
sent to a cloud data center located on the municipal-
ity premises. For the fog nodes locations, we select a
set of six government buildings, while the location of
the municipality cloud data center is known. To sum-
marize, the scenario is composed of 89 sensors, 6 fog
nodes and 1 data center.

We assume to have sensors with long-range wire-
less connectivity, such as LoRA WAN1 or IEEE
802.11ah/802.11af [10]. Hence, every sensor can
connect with every fog node. Due to the growing de-
lay and decreasing bandwidth limitations as the dis-
tance from a sensor to the fog node increases, we as-
sume that the network delay depends on the physical
distance between two nodes as in [2, 3].

Regarding the parameters for the models, even if
the model itself support the description of a highly
heterogeneous architecture, we focus on an homoge-
neous scenario. Hence, the cost cj of locating a fog
node at position j is equal to 1, for all j ∈ F . This
means that, from an operating cost point of view, the
fog nodes are similar and the objective function will
strive to reduce the overall number of nodes used.
In the performance evaluation, we describe each sce-
nario using the following main parameters:

• λ is the data rate of each sensor;

• ρ is the average utilization of the system, defined
as

∑
i∈S λi∑
j∈F µj

;

• δµ is the ratio between the average network de-
lay δ and the average service time of a request
that we denote as 1/µ. This parameter determine
the CPU-bound or network-bound nature of a sce-
nario.

Based on preliminary evaluation of the smart city
sensing application for traffic monitoring used in the
experiments, we consider that each sensor can provide
a reading every 10 seconds. Hence the data rate λi =
0.1, ∀i ∈ S. For the parameter ρ, we consider a wide
range of values, namely ρ ∈ {0.1, 0.2, 0.5, 0.8, 0.9}.

1https://lora-alliance.org/

For each value of ρ, considering sensors and fog
nodes homogeneous and knowing the value of λi, we
derive the value of µj = µ, which is assumed the
same for each j ∈ F .

We consider values for the parameter δµ rang-
ing multiple orders of magnitude, that is δµ ∈
{0.01, 0.1, 1, 10}. This parameter allows us to ex-
plore scenarios that can be CPU-bound (e.g., when
δµ = 0.01) where computing time is much higher
than transmission time up to cases that are network-
bound (e.g., when δµ = 10). We derive the average
network delay from the δµ parameter and the previ-
ously computed parameter µj . It is worth mention-
ing that, even if in our analysis we may end up with
very high network delays, these scenarios can be still
considered realistic if we consider that the network
contribution may involve the transfer of images over
low-bandwidth links. In the definition of the SLA in
Eq. (20), the constant K is set to 10, which is a com-
mon value in the literature [1].

The evaluation of the proposed model considers a
wide range of different scenarios related to the previ-
ously introduced parameters. Each scenario is named
according to a format ins-ρ-δµ (e.g., the instance ins-
0.1-0.01 indicates that the scenario has ρ = 0.1 and
δµ = 0.01). In the experiments, we compare the fol-
lowing models:

• Simplified model (SM ): is the simplified version
of the problem described in Section 2.1 and pre-
sented for the first time in [2] in which all fog
nodes are assumed on, that is Ej = 1,∀j ∈ F .
Although this could represent a situation where
the energy consumption may be high, the infras-
tructure provides better performance from a re-
sponse time point of view (for the objective func-
tion (12));

• Proposed model (PR): is the model introduced in
this study and described in Section 2.2;

• Continuous model (CN ): consists of the pro-
posed model in which all variables (i.e., Ej , xij ,
and yjk) are assumed continuous, ranging in the
interval [0, 1]. The result of this model is clearly
an infeasible solution, but can be used as a lower
bound for all the other models.

The main metric used in the comparison is the cost
related to the number of fog nodes located (i.e., turned
on in the network), which corresponds to (11). The
second metric is related to the actual average response
time and corresponds to (12). As a baseline for the
performance evaluation, we compare each alternative
model with the continuous model. Throughout the
performance analysis, we evaluate the performance
with respect to the continuous model using a devia-



tion measure for each objective function Obj1 in (11)
and Obj2 in (12). The deviation function is defined
as:

ε(ObjM1 ) =
ObjM1 −ObjCN1

ObjCN1

(21)

ε(ObjM2 ) =
ObjM2 −ObjCN2

ObjCN2

(22)

where ObjM1 and ObjM2 are the values of the objec-
tive functions for the model M ∈ {SM,PR}, and
ObjCN1 and ObjCN2 are the values of the objective
functions for the continuous model (CN ). For the nu-
meric results of the models we rely on LocalSolver2

version 9.0, with a time limit of 300 seconds (5 min-
utes) as stopping criterion. LocalSolver is a general
mathematical programming solver that hybridizes lo-
cal and direct search, constraint propagation and in-
ference, linear and mixed-integer programming, and
nonlinear programming methods. It can handle multi-
objective problems, where the objectives are opti-
mized in the order of their declaration in the model.

3.2 Performance evaluation

To provide a complete evaluation of the models, we
present the numerical values of the solutions (together
with the number of iterations required by LocalSolver
to reach the value) in Table 2. Moreover, we focus
the analysis on the deviation metric previously intro-
duced to compare the pros and cons of each consid-
ered model.

Figure 2 shows the deviation as heat maps for the
two objective functions of the simplified model. We
observe for this model that all scenarios have a feasi-
ble solution, confirming the benefit from introducing
a mathematical model in the data flow mapping (pre-
liminary experiments carried out with the model used
in [7] where the sensors-to-fog mapping is based only
on the geographic distance were unable to guarantee
feasible solution for high values of ρ). We observe
that, for the first objective function, the deviation
is driven just by parameter ρ, which determines the
number of fog nodes used by the continuous model.
Indeed, the simplified model uses all the available fog
nodes, while, especially when ρ is low, the processing
of sensors data may require just a fraction of the in-
frastructure computational power, thus motivating the
high value of the deviation.

Focusing, instead, on the second objective func-
tion in Figure 2b, we observe that a higher number
of fog nodes can provide a major reduction in the
response time, as testified by the large presence of

2http://www.localsolver.com
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Figure 2: Performance of the Simplified model.

blue hues in the figure. A deviation close to -100%
means that the simplified model halves the average
response time. Indeed, in this case we have an abun-
dance of computational power due to the use of all
the fog nodes, while the continuous model uses just
the minimum amount of resources to satisfy the SLA
constraint.

The performance of the proposed model are
shown in Figure 3. Unlike the previously consid-
ered model, this approach explicitly aims to reduce
the number of fog nodes used. The impact of this
choice is evident in Figure 3a, where we observe a
non-purely vertical pattern in the deviation. Further-
more, we observe that the deviation is, in most of the
cases, much lower compared to the other model – in-
deed the number of fog nodes is is the ceiling value
compared to the value of the CN model. There are a
few noteworthy exceptions, mainly in the case where
the parameter δµ is high. Under these circumstances,
the SLA constraint (13) requires more fog nodes be-
cause using a network link with above than average
delay is likely to result in a SLA violation. Due to the
Boolean nature of the variableEj , a fog node is either



Table 2: Results of the model and alternatives.

Continuous Simplified Proposed

Instance Obj-1 Obj-2 Iter. Obj-1 Obj-2 Iter. Obj-1 Obj-2

ins-0.1-0.01 0.6 0.08 65083 6 0.08 702 1 0.24
ins-0.1-0.1 0.6 0.13 75637 6 0.12 742 1 0.85
ins-0.1-1 0.6 0.80 93112 6 0.49 721 1 6.97
ins-0.1-10 0.6 5.23 99601 6 4.25 46757 6 4.25

ins-0.2-0.01 1.2 0.18 71518 6 0.18 80532 2 0.38
ins-0.2-0.1 1.2 0.32 60473 6 0.27 73102 2 0.74
ins-0.2-1 1.2 1.34 69463 6 1.02 72194 2 4.15
ins-0.2-10 1.2 9.69 96283 6 8.54 37529 6 8.54

ins-0.5-0.01 3.0 0.75 110875 6 0.71 32670 4 1.40
ins-0.5-0.1 3.0 1.09 70181 6 1.00 25875 4 1.86
ins-0.5-1 3.0 4.60 41097 6 3.16 17130 4 4.42
ins-0.5-10 3.0 36.43 58968 6 22.24 21714 6 22.24

ins-0.8-0.01 4.8 3.29 108225 6 2.78 40842 5 16.23
ins-0.8-0.1 4.8 33.39 112087 6 3.30 30397 5 16.74
ins-0.8-1 4.8 14.40 90756 6 8.31 32277 5 21.80
ins-0.8-10 4.8 56.62 95538 6 51.13 26977 6 51.13

ins-0.9-0.01 5.4 19.79 97888 6 6.39 22285 6 6.39
ins-0.9-0.1 5.4 15.68 123337 6 6.97 26125 6 6.97
ins-0.9-1 5.4 37.00 121558 6 12.82 25999 6 12.82
ins-0.9-10 5.4 69.00 45547 6 71.05 37716 6 71.05

used or not, so the objective function ObjPR1 reaches
a high value even when ρ is low. The CN model in-
stead allows the use of just a small fraction of every
fog node. This means that the model can use all the
available fog nodes turning them on just for the frac-
tion of their capacity required to satisfy the incoming
load.

Considering the impact of the second objective
function in Figure 3b, we observe that the proposed
model is typically able to achieve performance com-
parable with the continuous model. In some cases
the proposed model outperforms even the continuous
model. To better understand the reasons for this vari-
able performance, we focus on two extreme cases.
For ρ = 0.1 and δµ = 1, the proposed model provides
very poor performance compared to the continuous
alternative. To understand this high response time we
must consider that both the proposed and the contin-
uous models use the same number of fog nodes (just
one). Furthermore, we must factor in the significant
impact of network delays (that are not negligible com-
pared to the service time). In this scenario, not being
able to use a fraction of the computational power of
every fog node results in a high impact of the network
delays because we need to make every communica-
tion converge on just one fog node. An opposite case
is when we have a high load and low contribution of
network delays (e.g., ρ = 0.9 and δµ = 0.01). In this
case, having more fog nodes powered on than what is

strictly necessary (because Ej = 1 for all fog nodes)
results in a lower processing time. At the same time,
the low impact of network delays makes the problem
of achieving a good load balancing quite straightfor-
ward because the penalty for reaching a fog node far
away is almost negligible.

4 Conclusions

In this paper, we focused on a facility location-
allocation problem related to the management of a fog
infrastructure, with special attention to the mapping
of data flows from the sensors to the fog nodes and
from the fog nodes to the cloud data centers. Then, we
propose a mathematical model that starts with a list
of potential fog nodes and selects a minimal subset of
them to guarantee the satisfaction of a Service Level
Agreement.

We test the proposed model against alternative
models from the scientific literature. The experiments
are based on a realistic situation from a project for a
smart city application. We consider a wide range of
scenarios characterized by different load levels and by
different ratios between the service time (that is the
processing time for a set of data from a sensor) and
network delay. The results demonstrate that the pro-
posed model can outperform existing alternatives in
the literature. We also consider an ideal but unreal-
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Figure 3: Performance of the proposed model.

istic model and demonstrate that the proposed model
can, in several cases, achieve a result that is compara-
ble with this ideal solution.

This paper is a step in a wider research line on fog
infrastructure design. We plan to extend our proposal
including quickly and effectively heuristic algorithms
that can be used to solve our problem, and to intro-
duce dynamic scenarios where the load can change
through time.

REFERENCES

[1] D. Ardagna, M. Ciavotta, R. Lancellotti, and M. Guer-
riero. A hierarchical receding horizon algorithm for
QoS-driven control of multi-IaaS applications. IEEE
Transactions on Cloud Computing, pages 1–1, 2018.

[2] C. Canali and R. Lancellotti. A Fog Computing Ser-
vice Placement for Smart Cities based on Genetic
Algorithms. In Proc. of International Conference
on Cloud Computing and Services Science (CLOSER
2019), Heraklion, Greece, May 2019.

[3] C. Canali and R. Lancellotti. GASP: Genetic Algo-
rithms for Service Placement in fog computing sys-
tems. Algorithms, 12(10), 2019.

[4] V. Cardellini, F. Lo presti, M. Nardelli, and
G. Russo russo. Optimal operator deployment and
replication for elastic distributed data stream process-
ing. Concurrency Computation, 30(June):1–20, 2017.

[5] D. Celik Turkoglu and M. Erol Genevois. A com-
parative survey of service facility location problems.
Annals of Operations Research, in press, 2019.

[6] L. Cooper. Location-allocation problems. Operations
Research, 11(3):331–343, 1963.

[7] R. Deng, R. Lu, C. Lai, T. H. Luan, and H. Liang.
Optimal Workload Allocation in Fog-Cloud Comput-
ing Toward Balanced Delay and Power Consump-
tion. IEEE Internet of Things Journal, 3(6):1171–
1181, Dec 2016.

[8] H. A. Eiselt and G. Laporte. Objectives in location
problems. In Z. Drezner, editor, Facility Location:
A survey of application and methods, pages 151–180.
Springer, 1995.

[9] R. Z. Farahani, S. Fallah, R. Ruiz, S. Hosseini, and
N. Asgari. Or models in urban service facility lo-
cation: A critical review of applications and future
developments. European Journal of Operational Re-
search, 276(1):1 – 27, 2019.

[10] E. Khorov, A. Lyakhov, A. Krotov, and A. Guschin. A
survey on IEEE 802.11 ah: An enabling networking
technology for smart cities. Computer Communica-
tions, 58:53–69, 2015.

[11] R. Kramer, J.-F. Cordeau, and M. Iori. Rich vehicle
routing with auxiliary depots and anticipated deliv-
eries: An application to pharmaceutical distribution.
Transportation Research Part E: Logistics and Trans-
portation Review, 129:162 – 174, 2019.

[12] A. Marotta and S. Avallone. A Simulated Annealing
Based Approach for Power Efficient Virtual Machines
Consolidation. In Proc. of 8th International Confer-
ence on Cloud Computing (CLOUD). IEEE, 2015.

[13] OpenFog Consortium Architecture Working Group.
OpenFog Reference Architecture for Fog Computing.
Technical report, OpenFog consortium, Feb. 2017.

[14] L. Po, F. Rollo, J. R. Viqueira, R. Trillo, J. C. Lopez,
A. Bigi, M. Paolucci, and P. Nesi. Trafair: Under-
standing traffic flow to improve air quality. In Proc.
of IEEE International Smart Cities Conference (ISC2
2019), Casablanca, Morocco, Oct. 2019.

[15] R. A. C. Silva and N. L. S. Fonseca. On the loca-
tion of fog nodes in fog-cloud infrastructures. Sensors,
19(11), 2019.

[16] S. Yi, C. Li, and Q. Li. A survey of fog computing:
Concepts, applications and issues. In Proceedings of
the 2015 Workshop on Mobile Big Data, Mobidata
’15, pages 37–42, New York, NY, USA, 2015. ACM.

[17] A. Yousefpour, G. Ishigaki, and J. P. Jue. Fog com-
puting: Towards minimizing delay in the internet of
things. In 2017 IEEE International Conference on
Edge Computing (EDGE), pages 17–24, June 2017.


