PARTE C

VLAN

Modulo 1: VLAN

LAN Tradizionale

- Gli host sono aggregati "fisicamente" mediante dispositivi di rete, quali hub, switch e router
- Hub: non differenziano il dominio di collisione né il dominio di broadcast
- Switch: differenziano il dominio di collisione ma non il dominio di broadcast
- Router: differenziano sia il dominio di collisione sia il dominio di broadcast

Virtual Local Area Network

Mediante le VLAN gli host possono essere raggruppati "logicamente"

dipartimento, applicazioni che eseguono, funzioni, livello di riservatezza, ...

Facilità di gestione

Invece di ricablare ad ogni spostamento, si modifica la configurazione dei dispostivi di rete

Isolamento

Comunicazione diretta impedita tra VLAN diverse

Performance

Il traffico di broadcast è limitato agli host della VLAN

Implementazione

- Tecnicamente creare una VLAN equivale a creare un dominio di broadcast separato
- Gli host che si trovano all'interno della VLAN possono comunicare direttamente
- Gli host che si trovano in VLAN differenti possono cominicare mediante l'intermediazione di un dispositivo di rete (router)

Funziona perché per risolvere un indirizzo IP il protocollo ARP individua l'indirizzo di destinazione MAC mediante broadcast

La richiesta broadcast arriverà solo agli host facenti parte delle stessa VLAN

Bridge VLAN-aware

- Access list definiscono quali porte possono ricevere/inviare frame da/verso le diverse VLAN
- Un frame in arrivo al bridge viene etichettato con l'identificatore numerico della VLAN
- Viene inoltrato solo sulle porte che possono accedere alla relativa VLAN

L'assegnazione della VLAN può avvenire in base a diverse proprietà del pacchetto

- livello 1 porta di ingresso
- livello 2 mac address del frame ma anche a livello 3, 4

Collegamento al bridge

Access link

Usato da dispositivi o segmenti di rete VLAN-unaware. Il tagging e l'untagging sono eseguiti in modo trasparente dal bridge

• Trunk link

Tutti i dispositivi connessi a questo link sono **VLAN-aware** e sono in grado di interpretare il tag VLAN presente nei frame [i.e. IEEE 802.1q]

• Hybrid link

Un link sulla quale possono essere connessi entrambi i tipi di dispositivi.

 Non incapsula il frame ethernet ma aggiunge un campo

Viene aggiunto un identificativo di 12bit

4094 possibili VLAN (0 e 4095 riservati) **TPID = 0x8100 per distinguersi da un normale frame ethernet**

Modulo 2: VLAN con Linux e vde_switch

Reti di calcolatori e lab 2018-19

 Linux supporta la creazione di interfacce virtuali che gestiscono il tagging e l'untagging dei frame per una particolare VLAN

Si crea un'interfaccia "virtuale" figlia di una fisica

All'interfaccia virtuale arriveranno solo i pacchetti per la VLAN relativa ricevuti dall'interfaccia fisica

I pacchetti inviati tramite l'interfaccia virtuale avranno il tag VLAN aggiunto automaticamente e saranno inviati sull'interfaccia fisica

• Approfondiremo il discorso delle interfacce virtuali parlando di IP Creazione dell'interfaccia VLAN
ip link add link <physif> <virtif> \
 type vlan id <N>
oppure,
vconfig add <physif> <N>

Rimozione
ip link del <virtif>
oppure,
vconfig rem <physif>.<N>

L'interfaccia <virtif> si configura con i tool standard. NB: l'interfaccia create con i precedenti comandi sarà *temporanea*.

VLAN trunk su Linux

 Per rendere le modifiche permanenti (in Debian), è necessario inserire nel file /etc/network/interfaces un'interfaccia del tipo <physif>.<N>

I parametri sono gli stessi necessari per la configurazione di una classica interfaccia Ethernet. Ad esempio:

```
auto <physif>.<N>
iface <physif>.<N> inet static
  address <ip_address>
  netmask <netmask>
  gateway <ip_addr_gateway>
```

VLAN trunk su Linux

Se l'interfaccia vlan è creata con *ip* il nome può non riflettere il vlan id, ad esempio:

ip link add link <iface> <virtf> type vlan id <id>

Per recuperare il vlan id associato ad una interfaccia *<virtif>* si può utilizzare il seguente comando:

grep VID /proc/net/vlan/<virtif>

```
Ad esempio:
# ip link add link eth0 pippo type vlan id 10
# grep VID /proc/net/vlan/pippo
pippo VID: 10 REORDER_HDR: 1 dev->priv_flags: 1
```

vde_switch

- VDE = Virtual Distributed Ethernet http://vde.sourceforge.net/
 Progetto Virtual Square (http://wiki.v2.cs.unibo.it)
- vde_switch mette a disposizione funzionalità utili per la virtualizzazione di una rete LAN avanzata, configurabili tramite un terminale
- supporto VLAN, bridge, STP, altro...
- distribuito (switch su diverse macchine host)
- modulare

compatibile con uml e uml_switch

Comandi principali di vde_switch che useremo:

- port : gestione delle porte
- **vlan** : gestione delle VLAN
- hash : gestione dell'hash table dello switch

help [comando] è vostro amico!

NB: altri comandi potrebbero essere disponibili in seguito al caricamento di plugin (e.g. vedi traffic sniffing con vde_switch con pdump) Configurazione delle VLAN su vde_switch

Creazione di due VLAN sugli switch vlan/create vlan_number

Impostare la VLAN per ogni porta a cui è collegato un host

port/setvlan port_number vlan_number

Aggiungere la porta collegata all'altro switch alla VLAN vlan/addport vlan_number port_number

NB: differenza fra port/setvlan e vlan/addport? Impostano rispettivamente VLAN untagged e tagged

Esempio prompt di vde_switch: help

vde\$ help		
0000 DATA END WITH	•	
COMMAND PATH	SYNTAX	HELP
ds		DATA SOCKET MENU
ds/showinfo		show ds info
help	[arg]	Help (limited to arg when specified)
Logout		logout from this mgmt terminal
shutdown		shutdown of the switch
showinfo		show switch version and info
Load []	path	Load a configuration script

Esempio prompt di vde_switch: VLAN

- vde\$ vlan/print
- 0000 DATA END WITH '.'
- **VLAN 0000**
 - -- Port 0001 tagged=0 active=1 status=Forwarding
- -- Port 0002 tagged=0 active=1 status=Forwarding VLAN 0042
 - -- Port 0002 tagged=1 active=1 status=Forwarding
 - -- Port 0003 tagged=0 active=1 status=Forwarding
 - **1000 Success**

Tagged = 1 : *Trunked Link*, accetta solo pacchetti taggati IEEE 802.1q Tagged = 0 : *Access Link*, accetta anche pacchetti non taggati, applica il tag a quelli non taggati

Esempio prompt di vde_switch: hash table

Modulo 3: Primo esercizio

Esercizio 1: VLAN Access link

VLAN Access link

switch s1
 switch s2
 H1: 192.168.1.1
 H2: 192.168.1.2
 H4: 192.168.1.4

Checkpoint 1: creare due LAN *"classiche", separate tra loro* => H1 comunica con H2, e H3 con H4

Checkpoint 2: mettere in comunicazione le due LAN => Tutti i nodi comunicano fra loro

Obiettivo finale: creare due VLAN *"trasversali"* alle LAN originali

=> H1 comunica solo con H3, H2 comunica solo con H4

Checkpoint 1

- 4 Host
- 2 Switch VDE
 - Solo gli host collegati allo stesso switch comunicano

Checkpoint 1: possibile soluzione

- Decidere a che porte degli switch collegare i nodi della rete:
- H1 collegato alla porta 1 dello switch 1
- H2 collegato alla porta 2 dello switch 1
- H3 collegato alla porta 1 dello switch 2
- H4 collegato alla porta 2 dello switch 2

La configurazione dei nomi degli host (opzionale) e delle interfacce di rete si esegue secondo le modalità viste nel precedente laboratorio

Checkpoint 2

- 4 Host
- 2 Switch
 VDE
 collegati
- Tutti i nodi comunica no fra loro

Target: collegare fra loro i due switch vde Nota: utilizzare un cavo cross!

Checkpoint 2: possibile soluzione

- Decidere che porte impiegare su ciascuno dei due switch
- Il collegamento fra gli switch viene effettuato impiegando la porta 3 su entrambi
- Verificare che tutti I nodi possano comunicare tra loro

Checkpoint 3

- 4 Host
- 2 Switch
 VDE collegati
- 2 VLAN
- I PC pingano solo all'interno della propria VLAN

Target: configurare le VLAN sugli swich vde

Checkpoint 3: possibile soluzione

- Decidere che tag associare a ciascuna VLAN:
- La VLAN che collega i nodi H1 e H3 ha tag 10
- La VLAN che collega i nodi H2 e H4 ha tag 20
- Date le scelte implementative precedenti, possiamo eseguire su entrambi gli switch i medesimi comandi:

vlan/create 10 vlan/create 20

port/setvlan 1 10
port/setvlan 2 20

vlan/addport 10 3
vlan/addport 20 3

Creazione VLAN 10

Creazione VLAN 20

- → VLAN untagged 10 per la porta 1
- → VLAN untagged 20 per la porta 2
- → VLAN tagged 10 per la porta 3

VLAN tagged 20 per la porta 3

Osservazioni

- Analizzare come il traffico Ethernet broadcast viene inoltrato dagli switch tramite i tool *arping* e *tcpdump* (eventualmente utilizzare anche i "led" degli switch di Marionnet che mostrano l'attività di rete delle porte). Ad esempio:
- come cambia l'inoltro del traffico tra il primo e il secondo checkpoint?
- perchè non possiamo utilizzare ping per testare il corretto funzionamento delle VLAN?
- Perchè dobbiamo utilizzare obbligatoriamente collegamenti trunk link fra gli switch?

Modulo 4: Secondo esercizio

Reti di calcolatori e lab 2018-19

Esercizio 2: VLAN trunk

VLAN trunk: possibile soluzione

- Si decide che la VLAN aggiuntiva usa tag 30, e H5 è collegato alla porta 4 di s2
- Occorre:
- Configurare H5
- Necessario aggiungere un'interfaccia virtuale di tipo VLAN su H1
- Configurare i due switch per propagare correttamente I frame della vlan 30

VLAN trunk: possibile soluzione

Necessario configurare i due switch in modo analogo rispetto a quanto fatto prima

switch1: vlan/create 30
 vlan/addport 30 1
 vlan/addport 30 3

switch2: vlan/create 30
 port/setvlan 4 30
 vlan/addport 30 3

NB: la porta 1 di s1 sarà configurata in modalità trunk (tagged), mentre la 3 di s2 in modalità access link (untagged)

VLAN trunk: possibile soluzione (3)

Necessario aggiungere un'interfaccia virtuale di tipo VLAN su H1

Configurazione on-the-fly (usando ip):

```
ip link add link eth0 vlan30 type vlan id 30
ip address add 192.168.2.1/24 dev vlan30
ip link set dev vlan30 up
```

Configurazione permanente, aggiungere a /etc/network/interfaces:

```
auto eth0.30
iface eth0.30 inet static
  address 192.168.2.1
  netmask 255.255.25.0
```

NB: in entrambi i casi si assume che eth0 sia già up

Osservazioni

- Ci sono differenze a sniffare il traffico sull'interfaccia di rete fisica e su quella virtuale configurata per la VLAN sull'host H1?
- Provare ad analizzare il traffico usando anche il filtro vlan [id] su host configurati con collegamenti trunk. Cosa cambia?
- Provare a utilizzare il comando ping fra due host in VLAN separate. Che risultato si ottiene e perchè? Che tipo di traffico stiamo generando?

Osservazioni

- Proviamo a contattare h1 da h5
 - # arping -i eth0 192.168.1.1
 - # ping 192.168.1.1
- Che differenze osserviamo?
- Perché ci sono queste differenze? [suggerimenti]
 - Ricordarsi quanto è stato accennato sul routing IP
 - Ricordarsi del comportamento di arp rispetto a interfacce dello stesso host